История и философия науки

объектов - силовых линий, зарядов, дифференциально малых элементов тока и т.д. Эти объекты Максвелл заимствовал из теоретических схем Кулона, Фарадея, Ампера, схем, которые он обобщал в создаваемой им новой теории. Подстановка в аналоговую модель новых объектов не всегда осознается исследователем, но она осуществляется обязательно. Без этого уравнения не будут иметь нового физического смысла и их нельзя применять в новой области.

Еще раз подчеркнем, что эта подстановка означает, что абстрактные объекты, транслированные из одной системы знаний (в нашем примере из системы знаний об электричестве и магнетизме) соединяются с новой структурой ("сеткой отношений"), заимствованной из другой системы знаний (в данном случае из механики сплошных сред). В результате такого соединения происходит трансформация аналоговой модели. Она превращается в теоретическую схему новой области явлений, схему на первых порах гипотетическую, требующую своего конструктивного обоснования.

55.Неклассический вариант формирование развитой теории.

Стратегии теоретического исследования не являются раз навсегда данными и неизменными. Они исторически меняются по мере эволюции науки.

Начиная со времен Бэкона и Декарта в философии и естествознании бытовало представление о возможности найти строгий, единственно истинный путь познания, который бы в любых ситуациях и по отношению к любым объектам гарантировал формирование истинных теорий. Этот идеал включался в основания классической науки. Он не отрицал изменчивости и многообразия ее конкретных методов, но в качестве цели, которой должен руководствоваться исследователь, провозглашал единую стратегию построения теории. Предполагалось, что вначале необходимо найти очевидные и наглядные принципы, полученные как обобщение опыта, а затем, опираясь на них, находить конкретные теоретические законы.

Эта стратегия полагалась единственно верным путем, методом, который только и приводит к истинной теории.. Применительно к исследованиям физики она требовала создания целостной картины изучаемой реальности как предварительного условия последующего применения математических средств ее описания.

Развитие естествознания XX века заставило пересмотреть эти методологические установки. Критические замечания в адрес классической стратегии исследований начали высказываться уже в конце XIX столетия в связи с обнаружением исторической изменчивости фундаментальных принципов науки, относительности их эмпирического обоснования и наличия конвенциональных элементов при их принятии научным сообществом (эмпириокритицизм, конвенциализм и др.). Выраженные в философии этого исторического периода определенные сомнения в абсолютности классической методологии исследований можно расценить как предварительный этап формирования новой парадигмы теоретического познания. Но сама эта парадигма утвердилась в науке во многом благодаря становлению современной, квантово-релятивистской физики, первой из естественных наук, продемонстрировавшей неклассические стратегии построения теории.

Характеризуя их, известный советский физик академик Л.И.Мандельштам писал: “Классическая физика большей частью шла так, что установление связи математических величин с реальными вещами предшествовало уравнениям, т.е. установлению законов, причем нахождение уравнений составляло главную задачу, ибо содержание величин заранее предполагалось ясным и для них искали уравнения. ...Современная теоретическая физика, не скажу — сознательно, но исторически так оно и было, пошла по иному пути. Это случилось само собой. Теперь прежде всего стараются угадать математический аппарат, оперирующий величинами, о которых или о части которых заранее вообще не ясно, что они обозначают”.

Этот способ исследований, который стал доминирующим в физике XX столетия, был связан с широким применением особого метода, получившего название математической гипотезы или математической экстраполяции.

Общая характеристика этого метода заключается в следующем. Для отыскания законов новой области явлений берут математические выражения для законов близлежащей области, которые затем трансформируют и обобщают так, чтобы получить новые соотношения между физическими величинами. Полученные соотношения рассматривают в качестве гипотетических уравнений, описывающих новые физические процессы. Указанные уравнения после соответствующей опытной проверки либо приобретают статус теоретических законов, либо отвергаются как несоответствующие опыту.

В приведенной характеристике отмечена главная особенность развития современных физических теорий: в отличие от классических образцов они начинают создаваться как бы с верхних этажей — с поисков математического аппарата — и лишь после того, как найдены уравнения теории, начинается этап их интерпретации и эмпирического обоснования. Правда, большего из воспроизведенной характеристики математической гипотезы извлечь, пожалуй, нельзя. Дальнейшая конкретизация этой характеристики требует установить, каким образом формируется в науке математическая гипотеза и в чем заключается процедура ее обоснования.

В этом направлении сделаны пока лишь первые шаги. Прежде всего следует отметить интересные замечания С.И.Вавилова по поводу существования регулятивных принципов (соответствия, простоты и т. д.), которые целенаправляют поиск адекватных математических средств. Особый круг проблем был поставлен автором термина “математическая экстраполяция” С.И.Вавиловым в связи с обсуждением природы корпускулярно-волнового дуализма. Было отмечено, что специфика математической гипотезы как метода современного физического исследования состоит не столько в том, что при создании теории перебрасываются математические средства из одной области в другую (этот метод всегда использовался в физике), сколько в особенностях самой такой переброски на современном этапе.

С.И.Вавилов подчеркивал, что математическая экстраполяция в ее современном варианте возникла потому, что наглядные образы, которые обычно служили опорой для создания математического формализма в классической физике, в настоящее время в квантово-релятивистской физике потеряли целостный и наглядный характер. Картина мира, принятая в современной физике, изображает специфические черты микрообъектов посредством двух дополнительных представлений - корпускулярного и волнового. В связи с этим оказывается невозможным выработать единую наглядную модель физической реальности как предварительную основу для развития теории. Приходится создавать теорию, перенося центр тяжести на чисто математическую работу, связанную с реконструкцией уравнений, “навеянных” теми или иными аналоговыми образами. Именно здесь и кроется необычность математической экстраполяции на современном этапе. “Опыт доводит до сознания отражение областей мира, непривычных и чуждых нормальному человеку. Для наглядной и модельной интерпретации картины не хватает привычных образов, но логика... облеченная в математические формы, остается в силе, устанавливая порядок и связи в новом, необычном мире”.

При таком понимании математической гипотезы сразу же возникает вопрос об ее отношении к картине мира, учитывающей специфику новых объектов. Очевидно, что здесь в неявной форме уже поставлена и проблема эвристической роли картины мира как предварительного основания для поиска адекватных математических средств, применяемых при формулировке физических законов. Весь круг этих проблем нуждается в специальном обсуждении.

57. Модели динамики научного знания в современной философии науки

Важнейшей характеристикой знания является его динамика , т.е. его рост, изменение, развитие и т.п. Эта идея, не такая уж новая, была высказана уже в античной философии, а Гегель сформулировал ее в положении о том, что "истина есть процесс", а не "готовый результат". Однако в западной философии и методологии науки XX в. фактически - особенно в годы "триумфального шествия" логического позитивизма - научное знание исследовалось без учета его роста, изменения.

Развитие знания - сложный диалектический процесс, имеющий определенные качественно различные этапы. Так, этот процесс можно рассматривать как движение от мифа к логосу, от логоса к "преднауке", от "преднауки" к науке, от классической науки к неклассической и далее к постнеклассической и т.п., от незнания к знанию, от неглубокого, неполного к более глубокому и совершенному знанию и т.д.

В современной западной философии проблема роста, развития знания является центральной в философии науки, представленной особенно ярко в таких течениях, как эволюционная (генетическая) эпистемология и постпозитивизм. Эволюционная эпистемология - направление в западной философско-гносеологической мысли, основная задача которого - выявление генезиса и этапов развития познания, его форм и механизмов в эволюционном ключе и, в частности, построение на этой основе теории эволюции науки. Эволюционная эпистемология стремится создать обобщенную теорию развития науки, положив в основу принцип историзма и пытаясь опосредовать крайности рационализма и иррационализма, эмпиризма и рационализма, когнитивного и социального, естествознания и социально-гуманитарных наук и т.д.

Модели:

1) генетическая эпистемология (Ж. Пиаже). В ее основе - принцип возрастания и инвариантности знания под влиянием изменений условий опыта. Генетическая эпистемология Ж. Пиаже пытается объяснить генезис знания вообще, и научного в частности, на основе воздействия внешних факторов развития общества, т.е. социогенеза, а также истории самого знания и особенно психологических механизмов его возникновения. Фундаментальная гипотеза генетической эпистемологии, указывает Пиаже, состоит в том, что существует параллелизм между логической и рациональной организацией знания и соответствующим формирующим психологическим процессом. Соответственно этому он стремится объяснить возникновение знания на основе происхождения представлений и операций, которые в значительной мере, если не целиком, опираются на здравый смысл.

2) Особенно активно проблему роста (развития, изменения) знания разрабатывали, начиная с 60-х гг. XX столетия сторонники постпозитивизма - К. Поппер, Т. Кун, И. Лакатос, П. Фейерабенд, Ст. Тулмин и др. В постпозитивизме происходит существенное изменение проблематики философских исследований: если логический позитивизм основное внимание обращал на анализ структуры научного познания, то постпозитивизм главной своей проблемой делает понимание роста, развития знания. В связи с этим представители поспозитивизма вынуждены были обратиться к изучению истории возникновения, развития и смены научных идей и теорий.

2.1) Первой такой концепцией стала концепция роста знания К. Поппера .

Поппер рассматривает знание не только как готовую, ставшую систему, но также и как систему изменяющуюся, развивающуюся. Рост знания не является повторяющимся или кумулятивным процессом, он есть процесс устранения ошибок, "дарвиновский отбор". Таким образом, рост научного знания состоит в выдвижении смелых гипотез и наилучших (из возможных) теорий и осуществлении их опровержений, в результате чего и решаются научные проблемы. Рост научного знания осуществляется, по его мнению, методом проб и ошибок и есть не что иное, как способ выбора теории в определенной проблемной ситуации - вот что делает науку рациональной и обеспечивает ее прогресс. Поппер указывает на некоторые сложности, трудности и даже реальные опасности для этого процесса. Среди них такие факторы, как, например, отсутствие воображения, неоправданная вера в формализацию и точность, авторитаризм. К необходимым средствам роста науки философ относит такие моменты, как язык, формулирование проблем, появление новых проблемных ситуаций, конкурирующие теории, взаимная критика в процессе дискуссии.

2.2) Общая схема (модель) историко-научного процесса , предложенная Куном, включает в себя два основных этапа:

- "нормальная наука", где безраздельно господствует парадигма,

- "научная революция" - распад парадигмы, конкуренция между альтернативными парадигмами и, наконец, победа одной из них, т.е. переход к новому периоду "нормальной науки".

Научное развитие, по его мнению, подобно развитию биологического мира, представляет собой однонаправленный и необратимый процесс.

2.3) Ст. Тулмин в своей эволюционной эпистемологии рассматривал содержание теорий как своеобразную "популяцию понятий", а общий механизм их развития представил как взаимодействие внутринаучных и вненаучных (социальных) факторов, подчеркивая, однако, решающее значение рациональных компонентов. При этом он предлагал рассматривать не только эволюцию научных теорий, но и проблем, целей, понятий, процедур, методов, научных дисциплин и иных концептуальных структур.

Рациональность научного знания определяется его соответствием стандартам понимания.

2.4) Лакатос рассматривает рост зрелой (развитой) науки как смену ряда непрерывно связанных теорий - притом не отдельных, а серии (совокупности) теорий, за которыми стоит исследовательская программа. Иначе говоря, сравниваются и оцениваются не просто две теории, а теории и их серии, в последовательности, определяемой реализацией исследовательской программы. Фундаментальной единицей оценки должна быть не изолированная теория или совокупность теорий, а "исследовательская программа". Основными этапами в развитии последней, согласно Лакатосу, являются прогресс и регресс, граница этих стадий - "пункт насыщения". Новая программа должна объяснить то, что не могла старая. Смена основных научно-исследовательских программ и есть научная революция.

3) После постпозитивизма развитие эволюционной эпистемологии пошло по двум основным направлениям. Во-первых, по линии так называемой альтернативной модели эволюции (К. Уоддингтон, К. Халквег, К. Хугер и др.) и, во-вторых, по линии синергетического подхода . К. Уоддингтон и его сторонники считали, что их взгляд на эволюцию дает возможность понять, как такие высокоструктурированные системы, как живые организмы, или концептуальные системы, могут посредством управляющих воздействий самоорганизовываться и создавать устойчивый динамический порядок. В свете этого становится более убедительной аналогия между биологической и эпистемологической эволюцией, чем модели развития научного знания, опирающиеся на традиционную теорию эволюции.

Синергетический подход сегодня становится все более перспективным и распространенным, во-первых, потому, что идея самоорганизации лежит в основе прогрессивной эволюции, которая характеризуется возникновением все более сложных и иерархически организованных систем; во-вторых, она позволяет лучше учитывать воздействие социальной среды на развитие научного познания; в-третьих, такой подход свободен от малообоснованного метода "проб и ошибок" в качестве средства решения научных проблем.

В истории науки существует два крайних подхода к анализу динамики, развития научного знания и механизмов этого развития :

- кумулятивизм считает, что развитие знания происходит путем постепенного добавления новых положений к накопленной сумме знаний. Абсолютизируется количественный момент роста, изменения знания, непрерывность этого процесса и исключает возможность качественных изменений, момент прерывности в развитии науки, научные революции. Развитие научного знания - простое постепенное умножение числа накопленных фактов и увеличение степени общности устанавливаемых на этой основе законов.

- антикумулятивизм полагает, что в ходе развития познания не существует каких-либо устойчивых (непрерывных) и сохраняющихся компонентов. Переход от одного этапа эволюции науки к другому связан лишь с пересмотром фундаментальных идей и методов. История науки изображается представителями антикумулятивизма в виде непрекращающейся борьбы и смены теорий и методов, между которыми нет ни логической, ни даже содержательной преемственности.

Объективно процесс развития науки далек от этих крайностей и представляет собой диалектическое взаимодействие количественных и качественных (скачки) изменений научного знания, единство прерывности и непрерывности в его развитии.

58. Традиции в науке, их виды и функции

Впервые вопрос о традиции был поставлен Т. Куном. Действие традиции проявляется в следующих ситуациях:

1) выбор научного языка: понятия – основной инструментарий научного познания, заимствованный из обыденной жизни или предшествующей традиции и неявно задают определенное видение мира. Когда понятия неадекватны, применение понятий тормозит развитие научного знания.

2) Выбор проблемы: несмотря на то, что в выборе проблемы играют роль разные мотивы, здесь действия и роль традиций особенно проявляются в существовании научных школ и направлений.

3) Использование методов: традиции организуют научное сообщество, создавая условия для сопоставимости результатов и дальнейшего обучения.

Классифицировать научные традиции можно по следующим критериям:

1. по способу существования:

- явные;

- неявные – передаются при личных контактах и являются невербальными.

2. по роли в системе науки:

- традиции, задающие способы получения знаний – исторические программы (методики исследования, приборы, образцы решения задач);

- традиции, задающие способы организации знаний – коллекторские программы (указание на объект изучения, принципы классификации, рубрикация дисциплин).

3. по сфере распространения:

- общенаучные;

- специальнонаучные.

Жизнеспособность научных традиций коренится в их дальнейшем развитии последующими поколениями ученых в новых условиях. Роль традиций в развитии науки неоспорима, однако, в некоторых случаях они могут служить ее препятствием, так традиции и новации, взаимодействуя, исключают друг друга.

59. Проблема научных новаций

Новации в науке имеют разный объект исследования :

- создание новых теорий, и возникновение новых научных дисциплин;

- построение новой классификации или периодизации, постановка новых проблем, разработка новых экспериментальных методов исследования или новых способов изображения;

- обнаружение новых явлений;

- введение новых понятий и новых терминов.

Все новации можно разбить на несколько групп в зависимости от того, с изменением каких наукообразующих программ они связаны :

- изменение исследовательских программ , включая сюда создание новых методов и средств исследования;

- изменение программ коллекторских , т.е. о постановке новых вопросов, об открытии или выделении новых явлений (новых объектов референции), о появлении новых способов систематизации знания;

- «повседневно научные» , которые осуществляются в рамках существующих программ, ничего в них не меняя по существу, это, в частности, повседневное накопление знаний.

Исследовательские новации – это появление новых методов, коллекторские - открытие новых миров, новых объектов исследования. Оба типа новаций могут приводить к существенным сдвигам в развитии науки и воспринимаются в этом случае как революции. Факты свидетельствуют, что эти новации тесно связаны друг с другом, что иллюстрирует и связь исследовательских и коллекторских программ.

Новые методы, как отмечают сами ученые, часто приводят к далеко идущим

последствиям - и к смене проблем, и к смене стандартов научной работы, и к

появлению новых областей знания. Укажем хотя бы очевидные примеры:

появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии.

Классы новаций:

- преднамеренные – результат целенаправленных акций;

- непреднамеренные - побочным образ этих акций.

Первые, согласно Куну, происходят в рамках парадигмы, вторые - ведут к ее изменению.

Преднамеренные связаны с преодолением незнания. Незнание - это область нашего целеполагания, область планирования нашей познавательной деятельности. Строго говоря, - это явная или неявная традиция, использующая уже накопленные знания в функции образцов. На этом уровне ученый способен сформулировать вопрос и попытаться найти пути его решения.

Непреднамеренные же новации связаны с преодолением неведения. В этом случае новые результаты появляются в русле 2-х концепций – концепции «пришельцев» и концепции побочных результатов исследования.

Концепция "пришельцев" имеет 2 варианта :

- в данную науку приходит человек из другой области, человек, не связанный традициями этой науки, и делает то, что никак не могли сделать другие.

- "пришелец" принес с собой в новую область исследований какие-то методы или подходы, которые в ней отсутствовали, но помогают по-новому поставить или решить проблемы.

Но если в первом случае для нас важна личность ученого, освободившегося от догм и способного к творчеству, то во втором – решающее


11-09-2015, 00:49


Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Разделы сайта