Природа геохимической зональности вкрест простирания Камчатской островной дуги

с относительным обогащением U над Th, типичное для ряда островных дуг и интерпретируемое как результат добавки относительно молодого (<350 тыс. лет) флюида к мантийному источнику, не найдено в породах ВВФ и СХ, большинство фигуративных точек лежит на линии равновесия или очень близко к ней. Однако, наблюдается слабое обогащение (до 12%) U над Th для пород ЦКД.

Летучие в расплавных включениях

ris10sm.jpg (13780 bytes)

Рис. 10

 Первые данные по изучению расплавных включений в породах пересечения представлены в [10]. Поскольку минералы, обогащенные летучими элементами (сульфиды, апатит, амфибол, флогопит) практически отсутствуют среди фенокристаллов изучаемых пород, поведение летучих контролируется в основном процессами фракционирования и дегазации. Поскольку калий является резко несовместимым элементом в расплаве и не затрагивается дегазацией, мы использовали отношение K/летучий как индекс дегазации.

Содержания серы во всех породах меньше 200 ppm. Тем не менее, содержания серы в расплавных включениях варьируют, достигая наивысших значений (1250 ppm) в образцах ЦКД. Возрастание K/S в расплаве при уменьшении Mg# (тренд дегазации) указывает на активный процесс дегазации в очаге. Лавы СХ почти нацело дегазированы. Прямые измерения валентности серы показали, что большинство расплавных включений содержит серу S6+ даже в высокомагнезиальных породах.

Наивысшие концентрации хлора обнаружены в ВВФ и высоко-Mg породах ЦКД (1710-1720 ppm), уменьшаясь в высоко-Al лавах Ключевского вулкана (1280 ppm) и далее к СХ (788 ppm). K/Cl указывает на дегазацию хлора при эволюции расплава.

Концентрации фтора в ВВФ и ЦК не высоки (420 ppm-520 ppm), стремительно возрастая в расплавных включениях из лав СХ (950 ppm). Интересно, что в расплавных включениях из пироксенитов СХ концентрации этого элемента также высоки. Поскольку фтор хорошо растворим в расплаве, отношение K/F не меняется внутри отдельно взятого образца Камчатского пересечения. Отношение F/Cl значительно меньше 1 в ВВФ и ЦКД, в то время как в расплавных включениях СХ возрастает до 2 (рис.10). При этом такие региональные вариации F/Cl обусловлены в основном устойчивым увеличением содержаний фтора от фронта к тылу дуги.

Интерпретация

Геохимическая зональность вкрест Камчатской дуги и ее причины

Четкая геохимическая зональность вкрест дуги была выявлена по макро- и микроэлементам для пород северного пересечения Камчатки от ВВФ через ЦКД к тыловой части СХ (рис. 4,5,6). Используя нормализованные к 6% МgO значения элементов в породах с > 5% MgO, можно уменьшить влияние процесса фракционирования на геохимическое разнообразие полученных расплавов. Тем не менее, остается еще ряд причин, влияющих на геохимическую неоднородность лав: (1) разнообразие мантийных источников, (2) обогащение мантийного клина водным субдукционным флюидом, (3) добавка осадочного материала в мантийный источник и (4) различная степень плавления мантийного вещества при движении от фронта к тылу дуги.

Используя Pb и Be изотопные данные, Керстинг и Аркулюс [17,5] доказали, что добавка осадочного материала незначительна в формировании Камчатских магм. Кроме того, вариации изотопных отношений Sr и O в лавах Ключевского вулкана, указывают на то, что флюид, являющийся спусковым крючком начала плавления вещества верхней мантии, формируется в основном в измененной океанической коре [11].

Процесс плавления

ris11sm.jpg (12113 bytes)

Рис.11

 Уменьшение степени плавления Ol-Opx-Cpx мантии, приведет к обогащению расплава по несовместимым элементам. Остаточный гранат в мантии может сильно влиять на HREE и Y, удерживая эти элементы в расплаве на низком уровне до момента его полного исчезновения. Низкие значения La/Yb отношения (1,83 - 10,28), отсутствие обогащения 230Th над 238U и низкие концентрации тяжелых REE (6-15 раз выше хондритовых значений), указывают на отсутствие значительных количеств остаточного граната в мантийных источниках пород Камчатки.

Планк и Лангмюр [24] показали, что степень плавления под активными островными дугами зависит от мощности мантийного клина и выражена в отрицательной корреляции между Ca6,0 и Na6,0 от фронта дуги к тылу. Причина такой корреляции в том, что Ca удерживается клинопироксеном в мантии, а Na - нет. В случае Камчатского пересечения такой тренд должен быть очевиден, поскольку глубина сейсмофокальной зоны увеличивает в 4 раза от ВВФ к СХ. Это мы и наблюдаем на диаграмме CaO6,0 - Na2O6,0 (рис.11A), где наши данные полностью совпадают с трендом [24]. (Na2O/CaO)6,0 прогрессивно растет от ВВФ к ЦКД и далее остается постоянным к СХ (рис.11Б). Наивысшие значения Na6,0 найдены в породах ВПТ, что свидетельствует в пользу низких степеней плавления мантии в источнике этих пород. Следуя расчетам [24], породы ВВФ имеют наивысшую степень плавления - 20%. Более низкая степень плавления (9-12%) типична для лав ЦКД и СХ. Сходные оценки были получены и при сравнение разных групп несовместимых микроэлементов [9]. Отсутствие зависимости степени плавления от глубины погружения океанической плиты между ЦКД и СХ можно объяснить в рамках двухстадийной модели Пирса и Паркинсона [23]. На первой стадии плавление инициируется поступлением флюида в мантию, что может быть особенно важно для нашего З-В пересечения в связи с высвобождением больших объемов флюида при субдукции подводного Императорского хребта под Камчатку. Вторая стадия является результатом декомпрессионного плавления при уменьшении плотности обводненной мантии и процесса внутридугового спрединга, проявленного в настоящее время в ЦКД.

Вариации в составе мантийного источника до добавления флюида

ris12sm.jpg (11913 bytes)

Рис. 12

 По Nb/Yb отношению (рис.6В) лавы ВВФ и ЦКД близки источнику MORB. Породы же СХ имеют повышенные значения Nb/Yb, которые резко возрастают в ВПТ лавах. Подобное поведение наблюдается и для Nb/Zr отношения, отвергая гипотезу остаточного граната (см. также выше). Эти признаки однозначно свидетельствуют о том, что мантия под СХ обогащена.

Диаграмма Th/Yb - Ta/Yb использовалась Пирсом [22] для выявления между обогащенным и обедненным источниками в примитивных островных базальтах (рис.12). Вариации состава мантийного источника должны выражаться в изменении обоих отношений. Образцы ВВФ и ЦКД попадают в область океанических островных дуг, находясь на границе толеитового и известково-щелочного полей. Лавы СХ формирует узкое поле, простирающееся от океанических дуг к обогащенному мантийному компоненту. Расположение всех фигуративных точек Камчатских лав (включая образцы ВПТ) над полем мантийной "стрелки" вызвано флюидной добавкой Th при постоянном Yb, предполагая добавку флюида к различным (от обедненного до слегка обогащенного) мантийным источникам. Более близкое положение лав ВПТ СХ к полю мантийных значений указывает на меньшее влияние в них флюида.

Две причины могут объяснить наблюдаемое обогащение мантийного источника СХ по HFSE: наличие источника типа OIB (базальт океанических островов), либо влияние глубинного флюида. Под СХ флюиды отделяются от плиты при более высоких P-T-условиях, при которых многие фазы, несущие HFSE, становятся не устойчивы. Такие флюиды содержат больше количество растворенных веществ, что расширяет их возможности переноса HFSE [7]. Состав флюида, обогащающего базальты задуговых бассейнов [27] обогащен по Y, но имеет Ta/Y отношение только вдвое выше, чем в источнике NMORB. Предположительно, такое же поведение и для Nb/Yb отношения, поскольку Nb и Yb ведут себя аналогично Ta и Y в мантии. Поэтому, трудно объяснить обогащение ВПТ базальтов по Nb/Yb (в 10 раз выше значений NMORB) только добавкой водного флюида.

На рисунке 8 внутри поля изотопных данных Камчатки выделяется три тренда, что предполагает участие трех компонентов в генезисе пород. От поля MORB, характеризующегося 87Sr/86Sr < 0.7031 и 143Nd/144Nd pribl.gif (61 bytes)0.5131, один тренд направлен к более высоким отношениям 87Sr/86Sr при неизменном 143Nd/144Nd. Флюид, отделяющийся от плиты, имеет такие ожидаемые отношения [11]. Второй тренд, сформированный в основном лавами СХ, идет с понижением неодимовых изотопных отношений при увеличении стронциевых. Такой тренд, вероятно, является результатом смешения с обогащенным мантийным компонентом, что согласуется с нашей интерпретацией о наличии компонента типа OIB в тыловой части дуги.

Породы ВВФ формируют поле между двумя упомянутыми трендами. Низкие концентрации HFSE в лавах ВВФ свидетельствуют об отсутствии компонента типа OIB в их источнике. Падению Nd-изотопных отношений сопутствуют повышенные значения изотопов Pb (рис.7В) и обогащение пород по Th/Nb элементному отношению. Керстинг и Аркулюс [17] показали, что тихоокеанские осадки около Камчатки обогащены по Pb- и обеднены по Nd-изотопам. Согласно нашим данным, в источнике некоторых пород ВВФ можно допустить малое количество (<< 1%) осадочного материала.

Таким образом, мантийный источник под Камчаткой подобен слегка обедненной мантии типа NMORB, осложняясь добавкой компонента типа OIB в тыловой части дуги (СХ). Степени плавления мантийного материала довольно высокие (10-20%), чем обусловлены низкие концентрации всего спектра несовместимых микроэлементов (за исключением элементов, подвижных во флюиде). Только в источнике некоторых лав ВВФ можно предположить минимальную добавку осадочного материала.

Вариации в количестве и составе субдукционного флюида

Согласно последним данным по коэффициентам распределения минерал-расплав-флюид [6,7], субдукционные флюиды должны быть обогащены LILE (K, Cs, Rb, Ba, Pb), меньше LREE и обеднены HFSE (Nb, Ta, Zr, Hf), Th и HREE, что находит подтверждение в распределении микроэлементов в вулканитах многих островных дуг [13,29, а так же многие другие].

Поскольку отношения несовместимых микроэлементов практически лишены влияния различных степеней плавления и фракционирования, они являются полезным инструментом в изучении процессов обогащения мантии. Миллер и др. [20] показали, что Ce/Pb отношение отражает степень обогащения расплава флюидом, потому что Pb высоко подвижен в нем, но в процессах плавления и кристаллизации ведет себя подобно Ce. В породах Камчатского пересечения нет никакой систематической зависимости Ce/Pb отношения от глубины поверхности субдуцируемой плиты, оно приблизительно постоянно (4-6) во всех трех регионах, только лавы Кизимена из ВВФ и ВПТ Срединного хребта имеют повышенные Ce/Pb значения, предполагая меньшую флюидную добавку в мантийные источники. При детальном рассмотрении поведения La и Pb (рис.5Г,Д), очевидно, что эти отклонения вызваны низкими содержаниями Pb. Это подтверждается также постоянным Ba/Zr отношением (рис.6Е). Эти результаты были так же подтверждены и количественными расчетами [9].

Однако концентрации LREE и HFSE также контролируются степенью обеднения/обогащения мантийного источника (см. выше), природа которого отражается в систематике радиогенных изотопов. Если флюид отличается по Sr- и Pb- изотопным отношениям от мантии (что может быть принято, по крайней мере, для Sr в измененной океанической коре), то высокие концентрации этих элементов во флюиде будут изменять изотопию мантии, метасоматизированной этим флюидом. Pb-изотопные отношения уменьшаются от фронта дуги к ЦКД и остаются постоянными далее к тыловой зоне (рис. 7В). Ограниченные количества (< 1 %) осадков в источнике лав ВВФ также могут формировать подобный тренд. Sr- и Nd-изотопные отношения не сильно чувствительны к добавке осадочного материала из-за их высоких концентраций в мантии. Однако, поведение Sr-изотопов иное, чем изотопов Pb: 87Sr/86Sr растет от ВВФ к ЦКД и резко уменьшается в породах СХ (рис.7A). Повышенные значения элементного U/Th и изотопного ((238U/232Th)> 1.7)) отношений, deltasm.gif (63 bytes)18О, некоторых халькофильных элементов и бора [18] в породах ЦКД, а также серы в расплавных включениях и присутствие серы как S6+, свидетельствуют о повышенной флюидной добавке в этом регионе. Как было показано ранее [11], флюиды, обогащенныеdeltasm.gif (63 bytes)18О и 87Sr/86Sr, отделяются от измененной океанической коры под Камчаткой и многократно фильтруются через мантийный клин, метасоматизируя его и обогащая тяжелыми изотопами. Логично предположить, что источником большого объема таких флюидов может являться Императорский подводный хребет, субдуцирущий в районе северного пересечения под Камчатку.

Однако флюидная добавка в мантийные источники ВВФ и ЦКД не обязательно происходила в настоящее время. U-Th изотопные значения в породах ВВФ и СХ лежат на линии равновесия, свидетельствуя о том, что флюид мог отделиться от плиты более 350 тыс. лет назад (время уравновешивания изотопов). Слабое неравновесие ((238U/230Th) = 1,0-1,15) можно наблюдать только для некоторых вулканов Ключевской группы, и по расчетным данным возраст этого флюидного обогащения не менее 130 тыс. лет (рис.9).

Различные модели существуют относительно минерального состава и степени дегидратации субдуцируемой плиты [8,25,23], т.е. параметров, влияющих на состав флюида. Источником Rb, K, Ba и Sr в магмах может быть амфибол, удерживающий эти элементы до глубин 60-70 км. Разрушение фенгита сопровождается сильным привносом Rb в мантию и немедленным понижением K/Rb отношения. Это отношение переменно в лавах ВВФ (300-600) и ЦКД (400-600) но практически постоянно в островодужных лавах СХ (460-520), чуть повышаясь в породах ВПТ (~600). Таким образом, эффект фенгита не наблюдается в мантийных источниках Камчатки (в отличие от [30]). Сильное увеличение LREE и La/Yb отношения (при постоянном Yb) от фронта дуги к тылу может быть результатом дегидратации лавсонита [8,32], который, согласно экспериментальным работам, может быть устойчив до 10 GPa [25] и значительно влиять на состав пород СХ.

Нолл и др. [2] показали, что породы фронтальных зон островных дуг обогащены, в отличие от тыловых зон, некоторыми халькофильными элементами (As, Sb), бором и цезием, что обусловлено высокой подвижностью этих элементов во флюиде. As и Sb имеют высокие концентрации в лавах ВВФ и ЦКД, но в образцах СХ сравнимы с NMORB [18]. Уменьшение концентраций Cs, As и Sb на Ce-нормированных диаграммах вкрест простирания дуги объясняется обеднением субдуцируемой плиты по этим элементам на ранних стадиях дегидратации. Обогащение расплавных включений из пород ВВФ и ЦКД по S и Cl так же подтверждает вывод о значительной роли флюида в источнике этих пород.

Магмообразование вкрест простирания Камчатской дуги

ris13sm.jpg (14395 bytes)

Рис. 13

 Мы показали, что: (1) различные источники вовлечены в формирование магм Камчатской дуги; (2) обогащенный компонент типа OIB наблюдается в мантийном источнике тыловой части, (3) субдуговая мантия подобна или слегка обеднена в сравнении с источником NMORB; (4) общий привнос флюидной компоненты в мантийные источники меняется незначительно вкрест дуги.

Рисунок 13 суммирует наши результаты и иллюстрирует модель формирования Камчатского дугового вулканизма. Глубина субдуцируемой под Камчатку плиты увеличивается от 100 км под ВВФ до 200 км под ЦКД и далее на запад, достигая 400 км под СХ. Специфика размещения ЦКД заключается в её расположении над тройным сочленением плит, где Тихоокеанская плита субдуцирует под Евроазиатскую, формируя внутридуговой рифт.

Степень плавления вкрест Камчатской дуги изменяется от 9-12 % (для СХ и ЦКД) до 20% (для ВВФ), что согласуется с опубликованными данными для других вулканических дуг. Вероятно, высокая степень плавления в ВВФ вызвана большим количеством водного флюида, высвобождающегося из субдуцируемой плиты на первой ступени ее обезвоживания. Субдукция Гавайского Императорского подводного хребта в этом районе может играть важную роль в формировании такого флюида. Плавление в зоне ЦКД строго обусловлено двумя факторами: дегидратацией плиты, и восхождением мантийных потоков в результате внутри - дугового рифтогенеза. Плавление в СХ также обязано высвобождению флюида при глубинной дегидратации плиты, но в меньших объемах, чем в других зонах.

Выше было показано, что общий вклад флюидной составляющей в источники Камчатских лав довольно однороден вкрест простирания дуги. Это, однако, не обязательно подразумевает одинаковый поток флюида во всех трех вулканических зонах Камчатки. Одинаковые содержания микроэлементов могут быть получены двумя путями: (1) одинаковым количеством одинакового по составу флюида или (2) различным количеством флюида с разным содержанием микроэлементов. В результате высоких P-T условий и разложения высокотемпературных минералов, глубинные флюиды под СХ, будут, вероятно, более обогащены несовместимыми элементами. Бюре и Кепплер [8] показали, что флюиды, полученные при дегидратации амфибола будут преимущественно водными и низкокремнистые, но обогащенные LILE и, возможно, хлоридами. Такие флюиды высокоподвижны, формируя большие объемы расплава, как мы и наблюдаем в ВВФ и ЦКД. В отличие от них, глубинные флюиды (более 100 км), образованные при распаде лавсонита и других высокотемпературных минералов, будут обеднены водой, но обогащены кремнием и, вероятно, могут переносить некоторые количества HFSE. Такие флюиды более вязкие и менее подвижны. Высокие F и F/Cl в расплавных включениях из лав и ксенолитов СХ указывают, что в отличие от ВВФ и ЦКД, мантийный источник в тыловой части обогащен фтором, что может быть результатом плавления насыщенных фтором фаз (например, флогопита), либо обогащения глубинного флюида этим элементом. Поскольку глубина субдуцируемой плиты меняется от ВВФ к СХ в 4 раза, роль халькофильных элементы во флюиде значительно варьирует вкрест дуги [18], отношения B/La, B/Nb, B/Be, и B/Zr стремительно уменьшаются от фронта дуги к тылу от значений 5, 12, 55, и 0,25 (EVF) до менее, чем 0,5, 1,0, 10, и 0,05, соответственно [18], а расплавы СХ обогащены фтором, мы склонны придерживаться второго сценария. Мы считаем, что в то время, как плавление в ВВФ инициируется большим количеством относительно бедного микроэлементами флюида, плавление под СХ вызвано меньшим количеством более обогащенного флюида.

Район ЦКД характеризуется наивысшей продуктивностью магмы на Камчатке. Вероятно, это связано с внутридуговым рифтингом и восходящими мантийными потоками в этой области. Несмотря на то, что степень плавления в этом регионе не очень высока (около 12%), благодаря массивной декомпрессии под рифтовой зоной, большой объем мантийного вещества мог вовлекаться в плавление. Вероятно, высокая магмопродуктивность ЦКД вызвана сочетанием двух процессов: (1) внутридуговым рифтингом с последующим восхождением мантийных масс и декомпрессионным плавлением и (2) обильным флюидным потоком, отделяющимся от субдуцируемого под Камчатку Императорского подводного хребта.

Выводы

1. Распределение макро- и микроэлементов в породах северного Камчатского пересечения типично островодужное. Систематические вариации от вулканического фронта на вулкане Комарова к тыловой части дуги на вулкане Ичинский уверенно указывают на наличие одной зоны субдукции в настоящее время на Камчатке.

2. Наблюдаемая геохимическая зональность обусловлена тремя главными факторами: (1) в разной степени обедненными или обогащенными мантийными источниками; (2) переменными степенями плавления мантии и (3) составом флюида, отделенного от субдуцируемой плиты.

3. В сравнении с источником NMORB, мантия под Камчаткой обеднена в разной степени: от слегка обедненной в районе ВВФ и ЦКД до существенно обогащенной в СХ.

4. Мантийный источник под СХ обогащен компонентом типа OIB, причем в меньшей степени это проявлено в островодужных лавах вулканов СХ, но играет заметную роль в формировании шлако-лавовых конусов (ВПТ-лавы).

5. Согласно распределению редких элементов, общая добавка субдукционого флюидного компонента примерно одинакова в породах всех трех зон дуги. Однако, содержания халькофильных элементов и бора


3-11-2013, 01:09


Страницы: 1 2 3
Разделы сайта