Основные сведения по геодезии

Содержание

Задание 1

Задание 2

Задание 3

Задание 4

Список литературы

магнитный азимут нивелирование теодолит угол

Задание 1

магнитный азимут меридиана нивелирование

Ответы на вопросы по темам 2, 3, 5, 7 (вопрос 9) раздела 1, «Основные сведения по геодезии».

1 Что называют магнитным азимутом и как перейти к нему от измеренного на плане или карте дирекционного угла линии?

Магнитным азимутом Am направления называется горизонтальный угол, измеряемый по ходу часовой стрелки (от 0 до 360 градусов) от северного направления магнитного меридиана до определяемого направления, (рис.1). Магнитные азимуты определяются на местности с помощью угломерных приборов, у которых имеется магнитная стрелка (компасов и буссолей). Использование этого простого способа ориентирования направлений невозможно в районах магнитных аномалий и магнитных полюсов.

Рис.1

Магнитное склонение. Переход от магнитного азимута к геодезическому азимуту. Свойство магнитной стрелки занимать определенное положение в данной точке пространства обусловлено взаимодействием ее магнитного поля с магнитным полем Земли. Направление установившейся магнитной стрелки в горизонтальной плоскости соответствует направлению магнитного меридиана в данной точке. Магнитный меридиан в общем случае не совпадает с геодезическим меридианом.

Угол между геодезическим меридианом данной точки и ее магнитным меридианом, направленным на север, называется склонением магнитной стрелки или магнитным склонением. Магнитное склонение считается положительным, если северный конец магнитной стрелки отклонен к востоку от геодезического меридиана (восточное склонение), и отрицательным, если он отклонен к западу (западное склонение). Зависимость между геодезическим азимутом, магнитным азимутом и магнитным склонением (рис.2) может быть выражена формулой:

Рис.2

Магнитное склонение изменяется с течением времени и переменой места. Изменения бывают постоянные и случайные. Эту особенность магнитного склонения необходимо учитывать при точном определении магнитных азимутов направлений, например, при наводке орудий и пусковых установок, ориентировании с помощью буссоли технических средств разведки, подготовке данных для работы с навигационной аппаратурой, движении по азимутам. Изменения магнитного склонения обусловлены свойствами . магнитного поля Земли.

Переход от магнитного азимута к дирекционному углу . На местности при помощи компаса (буссоли) измеряют магнитные азимуты направлений, от которых затем переходят к дирекционным углам; На карте, наоборот, измеряют дирекционные углы и от них переходят к магнитным азимутам направлений на местности. Для решения этих задач необходимо знать величину отклонения магнитного меридиана в данной точке от вертикальной линии координатной сетки карты. Угол, образованный вертикальной линией координатной сетки и магнитным меридианом, представляющий собой сумму сближения меридианов и магнитного склонения, называется отклонением магнитной стрелки или поправкой направления (ПН). Он отсчитывается от северного направления вертикальной линии координатной сетки и считается положительным, если северный конец магнитной стрелки отклоняется к востоку от этой линии, и отрицательным при западном отклонении магнитной стрелки: На рис.3 поправка направления равна 2°16' +5*16'= +7°32'. Поправку направления и составляющие ее сближение меридианов и магнитное склонение приводят на карте под южной стороной рамки в виде схемы с пояснительным текстом. Поправку направления в общем случае можно выразить формулой:

Рис.3

Если на карте измерен дирекционный угол направления, то магнитный азимут этого направления на местности:

Измеренный на местности магнитный азимут какого-либо направления переводится в дирекционный угол этого направления по формуле:

Чтобы избежать ошибок при определении величины и знака поправки направления, нужно пользоваться помещаемой на карте схемой направлений геодезического меридиана, магнитного, меридиана и вертикальной линии координатной, сетки. При точных измерениях переход от дирекционных углов к магнитным азимутам и обратно выполняется с учетом годового изменения магнитного склонения. Сначала определяют склонение магнитной стрелки на данное время (указанное на карте годовое изменение склонения магнитной стрелки умножают на число лет, прошедших после создания карты), затем полученную величину алгебраически суммируют с величиной склонения магнитной стрелки, указанной на карте. После этого переходят от измеренного дирекционного угла к магнитному азимуту по приведенным выше формулам.

2. Какие способы применяют для определения площадей на планах и картах и какова их точность?

(вопрос 9) раздела 1, «Топографические планы и карты».

Для решения многих инженерных задач землеустройства требуется знать площади земельных угодий. Эти площади могут быть рассчитаны аналитически по результатам измерений на местности либо определены по плану или карте графическим и механическим способами либо их комбинациями.

Графический способ определения площадей.

Следует иметь в виду, что по планам (картам) площадь определяется с меньшей точностью, чем по результатам непосредственных измерений на местности; при этом на точность определения площадей оказывают влияние погрешности измерений на местности, построения плана и измерений на них, а также деформация бумаги.

Для определения площадей небольших участков по плану или карте применяется графический способ с разбивкой участка на геометрические фигуры либо с помощью палеток. В первом случае искомую площадь небольшого участка разбивают на простейшие геометрические фигуры: треугольники, прямоугольники, трапеции. При криволинейном контуре участка его разбивка на геометрические фигуры выполняется с таким расчетом, чтобы стороны фигур по возможности ближе совпадали с этим контуром. Затем на плане(карте) измеряют соответствующие элементы фигур и по геометрическим формулам вычисляются площади этих фигур. Площадь всего участка определяется как сумма отдельных фигур.

Точность определения площади во многом зависит от масштаба плана, чем мельче масштаб, тем грубее измеряется площадь. Поскольку графическая погрешность линейных измерений на плане не зависит от длины отрезков, то относительная погрешность короткой линии будет больше, чем длинной. Поэтому заданный участок следует разбивать на фигуры больших размеров с примерно одинаковыми длинами оснований и высот. Для контроля и повышения точности площадь участка определяется дважды, для чего строят новые геометрические фигуры или в треугольниках измеряют другие основания и высоты. Относительное расхождение в результатах двукратных определений общей площади участка не должно превышать 1:200.

Правило: Каждую измеренную сторону (длину) на карте или плане в см необходимо перевести в масштаб заданной карты или плана и только после этого подсчитывать площадь по формуле.

Ошибки определения площадей графическим способом

Графический способ вычисления площадей состоит в том, что участок, изображенный на плане, разбивают на простейшие геометрические фигуры (треугольники, прямоугольники, трапеции). В каждой фигуре на плане измеряют высоту и основание, по которым вычисляют площадь, и сумма площадей фигур дает площадь участка.

Если участок разбит на треугольники, то площадь каждого треугольника равна:

P = 0,5lh (1.1)

Для получения зависимости между относительными средними квадратическими ошибками площади и измерений основания и высоты необходимо прологарифмировать выражение (1.1):

lnP = lnl + lnh - ln2

Дифференцируя по переменам l и h , получаем:

dP/P = dl/l + dh/h

Относительная средняя квадратическая ошибка площади треугольника равна:

(mp/P)2 = (ml/l)2 = (mh/h)2

Такую же зависимость можно получить для прямоугольника, параллелограмма, ромба и трапеции, если их площадь вычисляется по основанию и высоте (площадь трапеции по средней линии и высоте).

Ошибки измерения по плану можно считать одинаковыми независимо от длин линий:

(ml/P) = (mh/l) = m

Основание определяется несколько точнее высоты, потому что на определение высоты, помимо ошибки определения на плане, влияет также ошибка проведения основания между вершинами углов, до которого измеряется высота. Однако влияние этой ошибки на ошибку определения высоты невелико, если треугольник равнобедренный. Если же треугольник близок к прямоугольному, то ошибка высоты в 1,2 раза больше ошибки основания.

Тогда получаем:

Так как для треугольника lh = 2P , а для остальных фигур lh = P , то получим:

1) - для треугольника.

2) - для прямоугольника, параллелограмма и трапеции.

3) если участок разбивается на треугольники, у которых высоты примерно равны основаниям, то ошибка площади участка вычисляется по формуле:

где m - ошибка определения расстояния по плану.

А для прямоугольника (по форме близкого к квадрату), параллелограмма и трапеции:

Таким образом, площадь треугольника графическим способом вычисляется точнее площадей других фигур, следовательно, разбивкой участка на треугольники вычисляется площадь точнее, чем разбивкой на прямоугольники, трапеции и другие фигуры.

Способ определения площадей с помощью палетки

Определение площадей малых участков с резко выраженными криволинейными границами рекомендуется производить с помощью квадратной палетки. Палетка представляет собой лист прозрачной основы, на которую нанесена сетка квадратов со сторонами 1-5 мм. Зная длину сторон и масштаб плана, легко вычислить площадь квадрата палетки s.

Для определения площади участка палетку произвольно накладывают на план и подсчитывают число N1 полных квадратов, расположенных внутри контура участка. Затем оценивают «на глаз» число квадратов N2, составляемых из неполных у границ участка. Тогда общая площадь измеряемого участка

Палетки бывают прямолинейные и криволинейные.

К прямолинейным относятся квадратные и параллельные палетки.

К криволинейным относятся гиперболические палетки, представляющие систему гиперболических кривых и применяющиеся для определения площадей простейших геометрических фигур. Однако гиперболические палетки применяются редко, так как они не пригодны для быстрого определения площадей с криволинейными контурами.

Наиболее удобными для пользования и построения являются квадратная и параллельная палетки.

Квадратная палетка представляет сеть взаимно перпендикулярных линий, проведенных через 1-2мм на прозрачном материале. Площадь фигуры определяется простым подсчетом клеток палетки, наложенной на фигуру. Доли клеток, рассекаемых контуром на части, учитываются на глаз.

Для упрощения подсчетов количества клеток проводят утолщенные линии через 0,5см и 1см, чтобы подсчитать клетки группами – в 25 и 100 кв.мм.

Недостатком квадратной палетки является то, что площади долей квадратиков, рассекаемых контуром, берутся на глаз и то что, подсчет целых квадратиков или их долей сопровождался ошибками.

Площадь параллельной палеткой определяется так: накладывают палетку на контур так, чтобы крайние точки разместились посередине между параллельными линиями палетки. Так, весь контур оказывается рассеченным параллельными линиями на трапеции с одинаковыми высотами, причем отрезки параллельных линий внутри контура являются средними линиями трапеций.

При оценке точности определения площадей палетками принимается во внимание, что ими определяют площади криволинейных контуров, так как площадь участка, ограниченного прямыми линиями, быстрее и точнее можно определить графическим способом.

Палетками определяют площади небольших контуров, не превышающих 10 кв.см (с.к.о. или m = 0,03).

Механический способ определения площадей

В инженерной практике для определения площадей достаточно больших участков по планам или картам наиболее часто применяется механический способ, основанный на использовании специального прибора- планиметра. Конструкция планиметра впервые была предложена в 1856 г. одновременно швейцарцем Амслером и нашим соотечественником механиком А. Н. Зарубиным. Из многочисленных конструкций планиметров в настоящее время наибольшее распространение получили полярные планиметры типа ПП- 2К и его модернизированная модель ПП-М.

Допустимая ошибка при этом методе 1/400. В современных условиях применяют четвертый метод – электронный способ. Он связан с картами в электронном виде , т.е. с использованием ПК.


3. Опишите порядок работы при измерении теодолитом горизонтального угла "от нуля" (отсчет по горизонтальному кругу при визировании на опорную точку 00 ).

(вопрос 9) раздела 1 «Угловые измерения».

Сначала теодолитустанавливают в рабочее положение, т. е. прибор центрируют над вершиной измеряемого угла, приводят ось вращения теодолита в отвесное положение, устанавливают зрительную трубу «по глазу» и «предмету» и готовят отсчетный микроскоп для наблюдений.

Центрирование выполняют при помощи: нитяного отвеса с точностью 3-5 мм, оптического центрира (Т15, Т5 и др.) или зрительной трубы (Т30), направленной объективом вниз, с точностью до 0,5-1 мм. Приближенное центрирование выполняют перемещением штатива, а точное — перемещением теодолита по горизонтальной платформе штатива при открепленном становом винте.

Установка оси вращения теодолита в отвесное положение выполняют путем приведения в нуль-пункт пузырька цилиндрического уровня подъемными винтами. В результате при вращении алидады пузырек уровня не должен отклоняться от нуль-пункта более чем на одно деление уровня. Установка зрительной трубы «по глазу» и «по предмету» позволяет четко видеть штрихи сетки нитей и наблюдаемый предмет. Штрихи лимба и шкала отсчетного микроскопа также должны иметь четкое изображение.

Затем незакрепленную алидаду отводят влево на 30-40° и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора (в поле зрения трубы); алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление так же, как и на 1-е. На этом заканчивают полуприем. Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду влево на 30-40°; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360°, наводят на визирную цель 1-го направления, берут отсчет. Заканчивается прием.

4. В чем сущность гидростатического нивелирования?

(вопрос 9) раздела 1 «Измерение превышений (нивелирование)».

Гидростатическое нивелирование – определение высот точек земной поверхности относительно исходной точки с помощью сообщающихся сосудов с жидкостью.

Гидростатическое нивелирование основано на том, что свободная поверхность жидкости в сообщающихся сосудах находится на одном уровне. Гидростатический нивелир состоит из двух стеклянных трубок, вставленных в рейки с делениями, соединённых резиновым или металлическим шлангом и заполненных жидкостью (вода, спирт, диметилфталат и т.п.). Разность высот определяют по разности уровней жидкости в стеклянных трубках, причём учитывают различие температуры и давления в различных частях жидкости гидростатического нивелира. Погрешности определения разности высот этим методом составляют 1–2 мм. Гидростатическое нивелирование применяют для непрерывного изучения деформаций инженерных сооружений, высокоточного определения разности высот точек, разделённых широкими водными преградами, и др.

Задание 2

Вычисление исходных дирекционных углов линий; решение прямой геодезической задачи.

Задача 1. Вычислить дирекционные углы линий BC и CD , если известны дирекционный угол aAB = 49°40,2’ и измеренные правые по ходу углы b 1 = 189°59,2’ и b 2 = 159°28,0’ (рис. 1).

Рис

Дирекционные углы вычисляют по правилу: дирекционный угол последующей стороны равен дирекционному углу предыдущей стороны плюс 180° и минус горизонтальный угол, справа по ходу лежащий. Следовательно,

a BC = a AB + 180 ° - b 1

a CD = a BC + 180 ° - b 2

Вычисляем в столбик,

a AB ------ 49°40,2’

+ 180°

------------

229°40,2’

- 189°59,2’

------------

a BC ------ 39°41,0’

+ 180°

------------

219°41,0’

- 159°28,0’

a CD ------ 60°13,0’

Задача 2. Найти координаты xC и yC точки C (рис. 1), если известны координаты xB = -14,02 м и yB = +627,98 м точки B , длина (горизонтальное проложение) dBC =239,14м линии BC и дирекционный угол a BC = 39°41,0’этой линии.

Координаты точки C вычисляются по формулам:

xC = xB + D xBC

D xBC = dBC * cos a BC

yC = yB + D yBC

D yBC = dBC *sin a BC

Таблица

xB

+ DxBC

-14,02

+184,04

yB

+ DyBC

+627,98

+152,70

xC +170,02 yC +780,68

Задание 3

Составление топографического плана строительной площадки.

По данным полевых измерений составить и вычертить топографический план строительной площадки в масштабе 1:2000 с высотой сечения рельефа 1 м.

Работа состоит из следующих этапов: обработка ведомости вычисления координат вершин теодолитного хода; обработка тахеометрического журнала; построение топографического плана.

ИСХОДНЫЕ ДАННЫЕ

1. Для съемки участка на местности между двумя пунктами полигонометрии ПЗ8 и ПЗ19 был проложен теодолитно-высотный ход. В нем измерены длины всех сторон (рис. 2), а на каждой вершине хода – правый по ходу горизонтальный угол и углы наклона на предыдущую и последующую вершины. Результаты измерений горизонтальных углов и линий сведены в таблицу 1. Результаты тригонометрического нивелирования сведены в таблицы 3 и 4.

Рис. 2. Схема теодолитно-высотного хода съемочного обоснования

Таблица 1 . Результаты измерений углов и длин сторон хода

Номера

вершин хода

Измеренные углы

(правые)

Длины сторон

(горизонтальные

проложения) ,м

°
ПЗ 8 330 59,2 263,02
I 50 58,5
239,21
II 161 20,0
269,80
III 79 02,8
192,98
ПЗ 19 267 08,2

Измерение углов производилось оптическим теодолитом 2Т30 с точностью отсчетов по шкаловому микроскопу 0,5’.

2. Координаты полигонометрических знаков ПЗ8 и ПЗ19 (т. е. начальной и конечной точек хода):

xПЗ8 = -14,02;xПЗ19 = +170,02

yПЗ8 = +627,98;yПЗ19 = +780,68

дирекционный угол a 0 направления ПЗ7 – ПЗ8 = 49 ° 40,2’

дирекционный угол a n стороны ПЗ19 – ПЗ20 = 60 ° 13,0’

3. Отметки пунктов ПЗ8 и ПЗ19 принимаем условно согласно варианту

ПЗ8 – 149,149 м,

ПЗ19 – 152,431 м.

4. При съемке участка были составлены абрисы (рис. 3 и рис. 4. методических указаний)

Обработка ведомости вычисления координат вершин теодолитного хода (таблица 2)

Увязка углов хода

Значения измеренных углов записываем в графу 2 ведомости вычисления координат (табл. 2). В графе 4 записываем исходный дирекционный угол a 0 (на верхней строчке) и конечный дирекционный угол a n (на нижней строчке). Вычисляем сумму å b пр измеренных углов хода. Определяем теоретическую сумму углов:

Σβт =α0 –αn +180°*n

где n – число вершин хода.

Находим угловую невязку

f b = å b пр - å b т

Допустимая величина

fβдоп 1√n

Невязка f b не превышает допустимой величины, поэтому распределяем ее с обратным знаком поровну на все углы хода с округлением значений поправок до десятых долей минут. Исправленные этими поправками углы записываем в графу 3 ведомости. Сумма исправленных углов должна равняться теоретической.

Вычисление дирекционных углов и румбов сторон хода

По исходному дирекционному углу a 0 и исправленным значениям углов b хода по формуле для правых углов вычисляем дирекционные углы всех остальных сторон: дирекционный угол последующей стороны равен дирекционному углу предыдущей стороны плюс 180° и минус правый (исправленный) угол хода, образованный этими сторонами.

a П 38-I =a 0 +180°-b П 38 =49°40,2’+180°+360°-330°58,9’= 258°41,3’

a I-II =a П 38-I +180°-b I =258°41,3’+180°-360°-50°58,2’=27°43,1’

a II-III =a I-II +180°-b II =27°43,1’+180°-161°19,7’=46°23,4’

a III -ПЗ19 =a II - III +180°-b III =46°23,4’+180°-79°02,5’=147°20,9’

Для контроля вычисления дирекционных углов находим конечный дирекционный угол a n по дирекционному углу a III -ПЗ19 последней стороны и исправленному


29-04-2015, 00:38

Страницы: 1 2
Разделы сайта