Экономическая эффективность производства ферритовых стронциевых порошков на ОАО Олкон

только на внутрикарьерных перевозках. Автомобильные перевозки в рабочей зоне карьера осуществляется по системе временных съездов с уклоном 8о/оо, шириной проезжей части 18м с устройством выравнивающего слоя из щебня толщиной 20см.

В настоящее время на Оленегорском карьере применяются различные виды транспорта:

по руде – комбинированный автомобильно-конвейерный транспорт (циклично-поточная технология);

по породе – автомобильный (во внутренний отвал), автомобильно-железнодорожный, железнодорожный.


3.5. Отвальное хозяйство

Разработка месторождений традиционным способом, когда отсутствует принцип комплексного использования горной массы, сопровождается образованием огромного количества отвалов.

Вскрышные и вмещающие породы, накапливающиеся в отвалах, в течение длительного времени не перерабатываются, разрушаются в результате естественных процессов до пылевидного состояния и в таком виде вздымаются в атмосферу, кроме того, некоторая часть пород вымывается. Таким образом, отвалы являются дополнительным антропогенным источником загрязнения воздушного и водного бассейнов. В не меньшей степени этому способствуют и отходы обогащения железных и полиметаллических руд, образуя огромные хвостохранилища.

Отвалообразование предусматривается осуществлять бульдозерами ДЗ-118 на тракторе ДЭТ-250. Общая площадь, занятая отвалами - 950 га. Рекультивация земель, отведенных под отвалы предусматривается после окончания разработки месторождения.

В соответствии с "Нормами технологического проектирования" установлен парк технологических бульдозеров, предназначенных для:

зачистки рабочих площадок, планировки подъездов к экскаваторам в карьере;

работы на перегрузочных складах породы;

работы на внутренних автомобильных отвалах.

3.6. Хвостовое хозяйство

Хвостохранилище обогатительной фабрики ОАО «ОЛКОН» в бассейне бывшего озера Хариусного на расстоянии 3км южнее ОФ пущено в эксплуатацию в 1955г. Площадка хвостохранилища расположена между низовой дамбой, перегораживающий ручей железный, и верховой плотиной, отсекающей водосборную площадь вокруг озера Узкого.

Ложе хвостохранилища заторфовано до глубины 0.5-1.0м. Подстилающими грунтами являются пески гравелистые и средней крупности, супеси и суглинки моренные мощностью 4.5-17.0м.

Среднегодовая норма осадков 566мм/год, в т.ч. в весенне-летний период 318мм и в осенне-зимний период 248мм. Среднемноголетняя величина испарения 337мм/год.

Хвостохранилище образовано пионерной дамбой длиной около 4км, высотой до 5м с отметкой гребня 170м, построенной в 1955году. В дальнейшем хвостохранилище наращивалось намывным способом крупнозернистой частью хвостов ОФ и в настоящее время отметка гребня намывной дамбы составляет 193м, высота дамбы 30м. Площадь хвостохранилища 1.98км2.

Превышение гребня намывной дамбы над уровнем воды в хвостохранилище превышает 1.5м на всей длине. Минимальная ширина пляжа намывной дамбы 200м. Наибольшая крутизна низового откоса намывной дамбы составляет 1;3.7.

Вокруг водоприемного колодца отсыпана защитная дамба с подъездной автодорогой и площадкой обслуживания. Выноса мелких частиц фильтрационной водой не отмечено.

Пионерная дамба и верховые дамбы отсыпались из местного моренного грунта. Площадь хвостохранилища на отметке заполнения 193м составляет 11км2. Подача хвостов обогатительной фабрики комбината на хвостохранилище осуществляется системой гидротранспорта, используется гидравлическая укладка хвостов. Система гидротранспорта хвостов состоит из двух пульпонасосных №1 и №2 с насосами 20Гр и пульпопроводами Ду1200мм. Основной объём хвостовой пульпы перекачивается по пульпопроводу диаметром 1200мм. В настоящее время первая система гидротранспорта не эксплуатируется. С целью уменьшения потерь воды на фильтрацию предусматривается укладка хвостов на южный борт хвостохранилища.

Часть дренажных стоков и аварийный перелив пульпонасосной поступает в аккумуляционный бассейн, отгороженный дамбой в акватории Колозера. Имеются системы оборотного водоснабжения из хвостохранилища на озере Хариусном и из аккумуляционного бассейна Колозера. Сюда же производиться сброс промстоков обогатительной фабрики (2435.5м3/час).

3.7. Механизация производственных процессов Оленегорского карьера ОАО «Олкон»

3.7.1. Расчет необходимого парка буровых станков

Определим линию наименьшего сопротивления по подошве

, (1.1)

где m – количество ВВ, размещающегося в 1м;

m=7,85d2l, (1.2)

где d – действительный размер скважин, дм (2,45); l – плотность заряжания ВВ в скважине, кг/дм3 (1,1).

m=7,852,451,1=52 кг/м

p – коэффициент перебура скважин (0,375); Z – коэффициент забойки скважин (0,6); к – относительное расстояние между скважинами, м (0,9); h – высота уступа, м (15); g – удельный расход ВВ, кг/м3 (0,9)

Абсолютное расстояние между скважинами:

a=kW=0,98=7,2м

Проверим линию сопротивления по подошве по условиям техники безопасности:

W htg+b, (1.3)

где b – минимально допустимое расстояние от оси скважин до верхней бровки уступа, м (3); - угол откоса уступа, град (70)

W=8 150364+3=8,5 – в расчете принимаем 8м

Величина перебура

Lп=pa=0,3757,2=2,7 м – в расчете принимаем 3м (1.4)

Глубина скважины

lc=h+lп=15+3=18 м (1.5)

Масса заряда в скважине

Qз=qWah=0,987,215=778 кг (1.6)

Длина заряда

(1.7)

Длина забойки

lзаб=lс-lз=18-15=3м (1.8)

Выход горной массы с 1 п.м. скважины

, (1.9)

где a = c = 7,2м

Годовой объем бурения

,т.м/год, (1.10)

где Qв и Qр – соответственно производительность карьера по вскрыше и руде, м3; п – коэффициент потерь скважин (1,1); Vв и Vр – выход горной массы с 1м скважин по породе и руде

т.м/год

Сменная производительность бурового станка:

, м/см, (1.11)

где к=3,75 – коэффициент пропорциональности; F=30 – осевое усилие долота; n=81 – число оборотов бурового инструмента; =0,5 – коэффициент использования станка во времени; Т=8 час – продолжительность рабочей смены; f=16 – коэффициент крепости руды; f=12 – коэффициент крепости породы; d=24,4 – диаметр долота

По породе м/см

По руде м/см

Количество станков, необходимых для бурения горной массы

, шт., (1.12)

где кн=1,1 – коэффициент неравномерности работ; nсм=3 – число смен в сутки; Тр=210 – число рабочих дней в году; Рсм – сменная производительность бурового станка

По породе

По руде

С учетом коэффициента резерва 1,3 необходимо 4 буровых станка.


3.7.2. Погрузочные работы

Сменная производительность экскаватора

, (1.13)

где Е=10 – емкость ковша экскаватора, м3; Т=8 – продолжительность рабочей смены, час; кн=0,73 – коэффициент наполнения ковша; кр=1,5 – коэффициент разрыхления породы; Тц – время рабочего цикла экскаватора, сек.

Тцчпр, сек, (1.14)

где Тч – время черпания, сек

(1.15)

=0,5 - средний размер куска взорванной массы, м

Тп – время поворота, сек

(1.16)

Тпасп=26 – паспортная продолжительность операции поворота, сек; и п – соответственно действительный и паспортный угол поворота экскаватора, град

Тр=15 – время разгрузки, сек

Тц=12+26+15=53 сек

Годовая производительность экскаватора

Qгод=QсмNсм, м3, (1.17)

где Nсм=745 – число рабочих смен в году

Qгод= 1586,7745=1182т.м3


3.7.3. Выбор типа автосамосвала

Оптимальный весовой модуль:

(1.18)

где tц=0,5 – время цикла экскаватора при повороте стрелы на 900, мин;

с=tз(tц+tдв+tр+tз), (1.19)

tз=1- время замены груженного автосамосвала порожним у экскаватора, мин; tдв – время движения автосамосвала с грузом и порожняком за один рейс, мин (14,1и 16 соответственно плечу откатки 1,5 км (вскрыше) и 2,2 км (руда); tр=2 – время разгрузки автосамосвала на приемном пункте, мин

Для породной откатки:

Для рудной откатки:

Средневзвешенное значение весового модуля по годовому грузообороту:

(1.20)

где Ар и Ав=761 и 2900 – соответственно производительность карьера по руде и по вскрыше, м3/год; Lр и Lв=2,2 и 1,5 – соответственно средневзвешенное плечо откатки по руде и по вскрыше, км

Определим наиболее подходящую грузоподъемность автосамосвала:

qа=qев, (1.21)

qе – масса породы в ковше экскаватора, т

qе=Екэ, (1.22)

кэ=0,6 – коэффициент экскавации для скальных пород; =2,7 – плотность породы в целике, т/м3

qе=100,62,7=16,2 т

Тогда оптимальная грузоподъемность автосамосвала по техническим условиям составит:

Qа=16,29=145,8 т

Выбираем ближайший в параметрическом ряду автосамосвал грузоподъемностью 120 т. Значение объемного модуля комплекса определяем как:

0=вкн , (1.23)

кн=0,73 – средний коэффициент наполнения ковша экскаватора в заданных условиях

0=9,40,73=7

Вместимость кузова автосамосвала:

, (1.24)

кнк – коэффициент наполнения кузова ковша с учетом ”шапки”.


3.7.4. Тяговый расчет

Сила тяги автосамосвала рассчитывается для движения его на руководящем уклоне по формуле:

(1.25)

где Nдв=956 – мощность дизельного двигателя, кВт; V=18 – скорость движения автосамосвала вверх по руководящему уклону, км/ч; тр=0,85 – КПД трансмиссии; к=0,8; ом=0,95 – коэффициент, учитывающий величину отбора мощности от главной передачи для питания бортовых систем автосамосвала

Сила тяги не должна превышать силу тяги, определенную из условия сцепления колеса с дорогой:

Fк1000Рсц,

Где Рсц – сцепной вес автосамосвала, кН; =0,75 – коэффициент сцепления ведущих колес с дорожным покрытием

Сцепной вес автосамосвала определяем по формуле:

Рсц=(mа+qа)q, (1.26)

mа=90 – собственная масса автосамосвала, т; qа – расчетная масса груза в кузове, т; =0,65 – коэффициент, учитывающий часть веса автосамосвала с грузом, приходящуюся на ведущие колеса

qа=q+qт ,

q - грузоподъемность автосамосвала, т (120); qт –масса тары, т (210)

Рсц=0,65(90+330)9,81=2678,1 кН

F 10002678,10,75=2008575


3.7.5. Определение скорости движения автосамосвала

Для укрупненных расчетов принимаем по условию уклон всех автосъездов iр=80%, тогда динамический фактор автомобиля:


для движения вверх по съезду с грузом

D1 = w0ip = 400,8=32Н/кН; (1.27)

для движения с грузом по горизонтальной площадке

D2 = w0 = 40Н/кН

для движения без груза

D3 = w0 ,

где w0 и w0 – удельное сопротивление движению в грузовом и порожнем направлениях.

Среднетехническая скорость движения автосамосвала

(1.28)

Безопасная скорость движения на поворотах

, (1.29)


R=12 – радиус кривой, м; fск=0,3 – коэффициент бокового скольжения; iв=0,06 – поперечный уклон виража


3.7.6. Определение тормозного пути автосамосвала

Тормозной путь автосамосвала определяется по формуле

(1.30)

где V=30 – скорость движения автосамосвала, км/ч; =0,075 – коэффициент инерции вращающихся масс


К величине тормозного пути добавляем путь, проходимый автосамосвалом за время реакции водителя и приведения тормозов в действие tр.в.

S0=0,278V0tр.в.= 0,278300,7=5,8м (1.31)

SТобщ=23,8+5,8=29,6м


3.7.7. Эксплуатационные расчеты

3.7.7.1. Определение расхода топлива

Расход топлива карьерными автосамосвалами является важнейшим экономическим показателем эксплуатации карьерного автотранспорта. Расход топлива автосамосвалами пропорционален выполненной им работе и определяется по эмпирической зависимости

, (1.32)

где Т- плотность топлива, г/см3; кт –коэффициент собственной массы автосамосвала; w0 – удельное сопротивление качению, Н/кН; L – расстояние транспортирования, км; Н – высота подъема груза, м; qа – грузоподъемность автосамосвала, т; кq=0,85 – коэффициент использования грузоподъемности.

По вскрыше

По руде

Расход топлива на 100 км пробега

100. (1.33)

По вскрыше

По руде

Расход топлива при работе автосамосвалов лучше определять в литрах на 100 км пробега

(1.34)

По вскрыше

По руде

С учетом дополнительных факторов, влияющих на расход топлива, его общий расход

qтопл.общ=qтоплkмkзkн, (1.35)

где км=1,15 – коэффициент, учитывающий повышенный расход топлива; кз=1,2 – коэффициент, учитывающий расход топлива в зимнее время; кн=1,05 – коэффициент, учитывающий дополнительный расход топлива на внутригаражные службы.

По вскрыше

qтопл= 4501,151,21,05=652л/км

По руде

qтопл=4681,151,21,05=678л/км


3.7.7.2. Определение необходимого парка автосамосвалов

Время рейса автосамосвала

Тр=tпогр+tдв+tразг+tдоп, (1.36)

Где tпогр – продолжительность экскаваторной погрузки автосамосвала, мин,

(1.37)

qа=120 – грузоподъемность автосамосвала, т; qе=27 – масса породы в ковше экскаватора, т; tц=0,8 – среднее расчетное время цикла экскаватора при угле поворота стрелы экскаватора 900; Е=10 – вместимость ковша экскаватора, м3; кэ=0,7 – коэффициент экскавации; tдв=12 – время движения автосамосвала в обоих направлениях между конечными пунктами, мин; tразг=1 –время разгрузки автосамосвала на приемном пункте, мин; tдоп=2 – время ожидания на примыканиях и пересечениях карьерных автодорог.

Тр=5+12+1+2=20мин

Рабочий парк автосамосвалов

(1.38)

где Qсм – сменный грузопоток карьера, т

(1.39)

А=8029 – годовая производительность карьера, т.т.; кн=1,1 – коэффициент неравномерности грузопотока; Тсм=8 – продолжительность смены, ч; Qа – производительность автосамосвала, т/смену,

(1.40)

ки =0,85 – коэффициент использования смены; кq=0,93 – коэффициент использования грузоподъемности автосамосвала..

Инвентарный парк автосамосвалов

(1.41)

где кг=0,86 – коэффициент готовности; ки.п=0,9 – коэффициент использования рабочего парка; кр.с=1 – режим работы автосамосвала.


3.8. Расчет бульдозерного отвала

Производительность отвала

Q=QВkР , м3, (1.42)

Где Qв=2627 – объем вскрыши, т.м3; kр=1,5 – коэффициент разрыхления

Q= 26271,5=3940,5 т.м3

Площадь отвала

, (1.43)

h=58 – высота отвала, м; kо=0,8 – коэффициент, учитывающий откосы и неравномерность заполнения площадки.

Число одновременно разгружающихся автосамосвалов

(1.44)

где No – число автосамосвалов, разгружающихся в отвале в течение часа, шт.

(1.45)

Рв = 95,9 – часовая производительность экскаватора по вскрыше, м3; к=1,5 – коэффициент неравномерности работы карьера

tp – время разгрузки, мин

(1.46)

где tраз= 40 – продолжительность разгрузки автосамосвала, сек; tпер=10 – продолжительность переключения передачи, сек; R=15 радиус поворота автосамосвала при маневрировании, м; =2 – скорость движения автосамосвала при маневрировании, м/сек

4) Длина фронта разгрузки

Lv=Nooln, (1.47)

Где ln=40 – ширина полосы по фронту, занимаемой одним автосамосвалом при маневрировании, м

Lv=140=40 м

5) Число разгрузочных участков, находящихся в одновременной работе

(1.48)

6) Число участков, находящихся в планировке

Nn=Np=1 участок

Число резервных участков

Npp=Np(0,5-1)=1 участок

Общее число участков

Nобщ=NP+Nn+Npp=3 участка (1.49)

Общая длина отвального фронта

Lo=(2,5-3)Lv=0,540=20 м

Число бульдозеров в работе

(1.50)

где Qб –объем бульдозерных работ, м3

QбсмРвкз (1.51)

Тсм=8 – продолжительность рабочей смены, час; Рв – часовая производительность карьера по вскрыше, м3; кз=0,7 – коэффициент заваленности

Qб=895,90,7=537 м3

Рб=1450 – сменная производительность бульдозера, м3

Nб=537/1450=0,5=1 бульдозер


3.9. Пропускная и провозная способность транспортной системы

Пропускная способность самого напряженного участка трассы, полосы въездной траншеи определяется по формуле

, (1.52)

где К=1,5 – коэффициент неравномерности движения; Sб – безопасный интервал между автосамосвалами, м.

Sб=Sт+Lа, (1.53)

Sт=29,6 – полный тормозной путь автосамосвала, м; Lа=11,25 – длина автосамосвала по технической характеристике, м.

Sб=29,6+11,25=40,9м

Но по нормативам Крайнего Севера расстояние между автосамосвалами не может быть меньше 50 метров.

Провозная способность транспортной системы определяется

(1.54)

где f=2 – коэффициент резерва пропускной способности.

Полученную расчетную величину провозной способности проверяем по условию

(1.55)

Qсут=8659 – максимальный расчетный суточный грузопоток на данном участке трассы, т.

Коэффициент резерва пропускной способности


3.10. Ремонт горного оборудования

Техническое обслуживание и несложные текущие ремонты бурового оборудования и экскаваторов выполняются силами дежурных и ремонтных бригад карьера. Техническое обслуживание и текущий ремонт зарядных машин, спецмашин по доставке ВМ и другого оборудования, связанного с применением ВМ, осуществляются силами цеха по ведению взрывных работ, обслуживающего все карьеры комбината, входящих в состав Оленегорского ГОКа.

Участок горно-дорожных машин в составе ГОКа эксплуатирует, обслуживает и ремонтирует (за исключением капитальных ремонтов) дорожно-строительные машины, бульдозеры, трактора и спецмашины на их базе все карьеры комбината.

Кроме того, на ГОКе имеются централизованные службы и специализированные участки:

- водоотлива;

- ремонта бурового оборудования;

- ремонта горного оборудования;

- электроремонта горного оборудования, ремонтно-строительные.

Которые выполняют все виды ремонтов (за исключением капитального и среднего ремонта электрооборудования горных машин) в объемах, превышающих возможности соответствующих эксплуатационных участков карьеров.

Все обслуживание и текущие ремонты электрооборудования машин и механизмов ГОКа выполняются силами подразделений, эксплуатирующих это оборудование. Капитальные и средние ремонты электрооборудования выполняются электроремонтным участком электроцеха комбината, объединяющим всю службу его электроснабжения.

3.11. Водоотлив

Водоотлив на Оленегорском карьере в настоящее время осуществляется двумя насосными станциями.

Одна насосная станция, укомплектованная тремя насосными установками с насосами 8НДВ-60, откачивает поверхностные воды с висячего борта карьера. Приток к этой насосной станции составляет около 50 м3/ч, а с учетом паводковых и ливневых вод, он доходит до 825 м3/ч. Эти воды не имеют загрязнений и очистка их не производится.

Вторая насосная станция, укомплектованная шестью насосными установками с насосами ЦНС 300-480, установлена на дне карьера и служит для откачки карьерных вод на поверхность.

Проток к этой насосной станции составляет 600-700 м3/ч, а с учетом ливневых и паводковых вод он доходит до 1230 м3/ч. Эти карьерные воды насосной станцией по трем водопроводам, диаметром 273-325 мм откачиваются на поверхность и сбрасываются в самотечный коллектор.

По самотечному коллектору карьерная вода поступает в отстойник, откуда она после очистки сбрасывается в реку Ках.

На горизонте +35м в районе ЦПТ из наклонного ствола конвейера №4 по дренажному ходку производится сброс канализационных вод под откос уступа. Выход из ходка в настоящее время привален отвальными породами и вода поступает в пригрузку. Сброс канализационных вод на откос резко ухудшает инженерно-геологические условия, т.е. снижает устойчивость пород в откосе, При увлажнении происходит снижение сцепления по сланцеватости в гнейсах кварцитах и по контакту пригрузка-порода что приведет к обрушению.

Возможны два варианта отвода канализационных вод с помощью расширения наклонного ствола в зоне сопряжения ходка и квершлага для организации насосной станции и спуска воды не на откос, а перехвата её внутри наклонного ствола.

Качественный состав карьерных вод характеризуется наличием взвешенных веществ в количестве 43.8-66.5 мг/л, нефтепродуктов 2.3-6.25 мг/л, нитратов - до 128 мг/л и нитритов - до 10 мг/л.

Максимальная пропускная способность существующего коллектора карьерных вод, диаметром 600 мм, при уклоне 0,005 составляет 1577 м3/ч.

Существующий односекционный отстойник карьерных вод рассчитан на пропуск максимального расхода 14.4 тыс.м3/сут.

Для равномерного распределения карьерных вод по ширине отстойника, перед его рабочей частью устроена каменно-набросная призма.

Для задержания нефтепродуктов, в конце отстойника установлена, заглубенная под уровень, перегородка.

Осветленные карьерные воды при выходе из отстойника дополнительно очищаются фильтрами, заполненными стекловолокном.

Пропуск нормального расхода карьерных вод 900 м /ч осуществляется через одну секцию отстойника, пропуск максимального расхода 1500 м /ч - через две секции отстойника.

Карьерные воды после прохождения очистных сооружений сбрасываются в реку Ках и далее в озеро Колозеро.

В настоящее время на Оленегорском карьере находится в эксплуатации две насосные станции N 1, N 2 с насосами ЦНС 300-480. На северо-восточном участке находится станция N 1 с двумя насосами ЦНС 300-480; на юго-западном участке находится станция N 2 с тремя насосами ЦНС 300-480.

Насосные станции N 1, N 2 располагаются на дне карьера у водосборников, полезная емкость которых не менее трех часового нормального притока. Каждая насосная представляет собой утепленный вагон на салазках с прицепным устройством. Внутри вагона располагаются: насосный агрегат, трубопроводная арматура, электрооборудование и средства автоматизации, прибор электроотопления. Транспортирование насосных установок по карьерным дорогам производится с помощью трактора, а монтаж и обслуживание - с помощью самоходных грузоподъемных средств, для чего крыша вагона выполняется съемной.

Напорные магистральные трубопроводы прокладываются по горизонтальным уступам - на деревянных подкладках, по откосам - на металлических опорах, при пересечении дорог - в засыпке, с чехлом, и в траншеи - с чехлом. Трубопроводы укладываются с уклоном не менее 0,003 в сторону водосборника, что обеспечивает в зимнее время их освобождение от воды при остановке насоса. Количество труб предусмотрено с учетом их переукладки в рабочей зоне карьера.

По мере отработки карьера и в связи с понижением горных работ потребуется произвести замену существующих насосов на насосы с большим напором. Общее направление потока подземных вод с северо-запада на юго-восток с уклоном 0,009-0,013. Водообильность и фильтрационные свойства кристаллических пород в разрезе не равномерны и обусловлены характером и степенью трещиноватости пород, но отмечается общая закономерность уменьшения их с глубиной. Коэффициент фильтрации пород изменяется от 0,003 до 0,23 м/сут..

Карьерные воды средствами карьерного водоотлива сбрасываются в существующий коллектор диаметром 600мм. После прохождения очистных сооружений, сбрасываются в ручей, впадающий в Кахозеро. Данные об ожидаемой водопритоке в карьер приведены в таблице 1.4. и о притоках к системе осушения за 2002 год в таблице 1.5.


Таблица 1.4

Ожидаемый водоприток в карьере

Год

работы

Участок

карьера

Горизонт

Водопритоки, куб.м/ч

за счет подземных вод

за счет атмосферных осадков

max


юго-западный

110

150

240

390

2003

центральный

90

50

70

120


северо-восточный

95

90

110

200

ИТОГО:


290

420

710

конец

юго-западный

60

250

260

510

отработки

центральный

90

50

70

120


северо-восточный

95

80

110

190

ИТОГО:


380

440

820


Таблица 1.5

Притоки к системе осушения за 2002 год

Месяц

Север, куб.м

Юг, куб.м

январь

-

5280

февраль

-

7625

март

-

3425

1

2

3

апрель

-

40250

май

4400

79750

июнь

13800

40375

июль

4800

66000

август

14800

55000

сентябрь

22600

53500

октябрь

3600

34250

ноябрь

-

25625

декабрь

-

8875

ИТОГО:

64000

419955

ВСЕГО за год:

483955


3.11.1. Расчет водоотливной установки

Фактический водоприток в карьере по данным работы водоотливной установки наблюдается в пределах 300-450 м3/час.

Максимальный водоприток 983 м3/час.

Высота нагнетания Ннаг. = 241 м.

Высота всасывания Нвс = 2,5 м

Водоотлив из карьера осуществляется круглосуточно с помощью насосов ЦНС-300. На нижнем горизонте с помощью экскаватора находится зумпф глубиной 2,5м, который оборудован полустационарными насосами. С нижнего горизонта вода подается в коллектор, расположенный на борту карьера, и, пройдя через очистные сооружения, направляется в водоотливный канал. По каналу вода поступает в ручей который впадает в Кахозеро.

Насосная станция должна обеспечить откачку воды не более чем за 20 часов, а также располагать резервными насосами.

Определяем обходимую производительность насосной станции при откачке суточного притока:

(1.56)

где Q норм - нормальный приток воды, м3/час

Техническая характеристика насоса

Производительность - Q=300м3/час

Напор на 1 секцию - 60 м

КПД - 0,71

Скорость вращения - 1450 об/мин.

Ваккуметрическая высота - 5 м

Необходимое количество насосов при откачке нормального притока выбираем из расчета имеющихся в наличии насосов ЦНС -300

n норм = 540 / 300 = 1,8.

Принимаем в период нормального притока 2 насоса.

Определяем геодезическую высоту нагнетания:

Н г = Н н + Н вс = 241+2,5 = 243,5 м. (1.57)

Необходимый манометрический напор:

Н м = Н г / = 243,5 / 0,95 = 256,3 м; (1.58)

где: = 0,95 - КПД трубопровода.

Фактическая длина трубопровода

L ф = 1789 м

Расчетная длина трубопровода:

L р = L ф 1,2 = 1789 1,2 = 2146 м. (1.59)

Выбор оптимального диаметра нагнетательного става производится по технико-экономическому анализу возможных вариантов по методу профессора С.С. Смородина.

Внутренний диаметр трубопровода рассчитывается на параллельную работу двух насосов.

По характеристикам двух параллельно работающих насосов ЦНС-300 определяем потери напора при любой заданной производительности насосов в пределах рабочей зоны.

Удельные потери напоров определяем для 3-х вариантов при производительности:

Q min = 570 м3/час Н1 = 29,5

Q норм = 600 м3/час Н2 = 40,5

Q max = 630 м3/час Н3 = 52,5

Значения коэффициентов удельных потерь:

Для I варианта при Н1 = 29,5; Q = 570 м3/час

(1.60)

Для II варианта при Н2 = 40,5; Q = 600 м3/ час

Для III варианта при Н3 = 52,5; Q = 630 м3/ час

Так как мы знаем значения коэффициентов удельных потерь Кп для разных диаметров труб, то по таблице находим диаметры для всех трех вариантов:

I вариант - L1 = 350 мм

II вариант - L2 = 325 мм

III вариант - L3 = 300 мм

Исходя из расчетных диаметров трубопроводов по ГОСТу - 8732-78 выбираем ближайший диаметр (стандартный)

Таблица 1.6.


Толщина стенки (мм)

Внутренний диаметр (мм)

I вариант

10

357

II вариант

9

333

III вариант

8

309


Определяем время работы насосной станции при откачке нормального притока:

(1.61)

Максимального притока:

(1.62)

где: Q сут.н - суточный нормальный приток;

Q сут.max - суточный максимальный приток;

Q д - действительная производительность установки двумя

насосами на 1 став.

Для I варианта:

Для II варианта:

Для III варианта:

Принимаем III вариант работы, т.к. он обеспечивает меньшее время работы насосной установки. По III варианту принимаем внутренний диаметр нагнетательного трубопровода - 309 мм, а всасывающего трубопровода - 333 мм.

3.11.2. Расчет характеристики трубопроводов нагнетания и всасывания

Потери напора во всасывающем трубопроводе определяем в соответствии с количеством установленной аппаратуры.

Н вс = (1 + вс L вс/L вс + с + з + к.п.) V2вс / 2q, м. (1.63)

В нагнетательном трубопроводе:

Н н = (1 + н L н/L н + nо.к о.к + nк к + n з.к з.к. + nт т + nз з)

 V2 / 2q, м. (1.64)

где: вс и н - коэффициент гидравлического сопротивления;

1 = 1 - коэффициент учитывающий загрязнение труб;

Vвс = 1,5 м/с; Vн = 2,5 м/с - скорость движения во всасывающем и нагнетательном трубопроводах;

Lвс и Lн - геометрическая длина прямолинейных труб;

с = 2; к = 0,236; о.к. = 1,7; т = 1; з = 0,07; к.п = 0,7; з.к = 0,29.

гидравлические коэффициенты напора соответственно в приемной сетке, колене, обратном клапане, тройнике, задвижке, конусном переходе, закругленном колене;

nок = 1; nк = 11; nзк = 1; nз = 1; nт = 2 - соответственно количество обратных клапанов, колен, закругленных колен, задвижек, тройников.

(1.65)

(1.66)

где: Кш - коэффициент шероховатости, для поверхности стальных труб Кш = 0,02;

Кш = 0,02 - коэффициент, зависящий от температуры воды, при 10С.

Н вс = (1 + 0,048 6,5 / 0,333 + 2 + 0,7) 1,5 2 / 2


29-04-2015, 03:50


Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13
Разделы сайта