Теплогенерирующие установки

k • t • b

195 • 103 .
3000 • 155 • 0,85

0,49

Принимаем горизонтальный пароводяной подогреватель типа ТКЗ № 1

H=3,97 м2, S=0,0032 м2, G=25 т/ч,

l1=1355 мм, l2=660 мм, H=760 мм, D=273 мм, M=500 мм


Расчет конденсатного бака (поз.8)

Наименование величин

Обозн.

Ед изм.

Расчетная формула или обоснование

Расчет

Значе-ние

Общее количество конденсата

Gк

кг/с

Gкп + Gкт + Gср

1,44 + 5,18 + 0,09 6,71
Диаметр трубопровода из конденсатного бака

dyк

мм

80

(75)

Средневзвешенная температура конденсата в баке

tк

C

( Gп • tкп + Gт • tкт + Gсрt2)
(Gпр + Gт + Gср)

74,6

(5,18 • 80 + 1,44 • 49 + 0,09•164 )
5,194 + 18,65 + 0,09

Объем конденсатного бака (на 20 мин.)

Vк

м3

Gк • vв • 20 мин. • 60 сек.

6,71 • 0,001 • 20 • 60 8,05

Расчет барботажного бака (поз.18)

Наименование величин

Обозн.

Ед изм.

Расчетная формула или обоснование

Расчет

Значе-ние

Количество сырой воды для разбавления продувочной воды

Gхво

кг/с

G'пр • (t”пр.б. + tкл)
tкл – tсв

0,74 • (40 + 10)
10 - 5

7,4
Диаметр трубопровода сырой воды в барботажный бак dy мм

80

(79)

Объем конденсатного бака (на 20 мин.)

Vк

м3

(G’пр+ Gк )• vв • 20 мин. • 60 сек.

(0,74+7,6) • 0,001 • 20 • 60 10

Расчет теплообменника питательной воды (поз.11)

Gда = 10,76 кг/с

tда = 104,8 оС

Gхво = 3,78 кг/с

tхво‘= 45 оС

Gда = 10,76 кг/с

tпв = 100 оС

Gхво = 3,78 кг/с

tхво = 30 оС

Наименование величин

Обозн.

Ед изм.

Расчетная формула или обоснование

Расчет

Значе-ние

Количество умягченной воды, поступающей в деаэратор

G'хво

кг/с

Gхво / Ксн.хво

3,78 / 1,1 3,44
Диаметр трубопровода подпиточной воды, поступающее на ХВО

dyхво'

мм

50

(54)

Количество воды, поступающей из деаэратор

Gда

кг/с

Gпв + Gут

9 + 1,76 10,76
Диаметр трубопровода подпиточной воды, поступающее на ХВО

dyда'

мм

100

(95)

Количество теплоты расходуемое в теплообменнике питательной воды

Q5

кВт

Gда • (tда –tпв) • c

10,76• (105-100) • 4,19 212
Температура воды идущей в деаэратор

tхво

оС

Qпа - tsд
G'хво • с •

212 + 30
3,44 • 4,19 • 0,98

45
Средний температурный напор

tб

tм

tб/tм

t

оС

tпв – tхво

tда – t’хво


(tб-tм)/2

100-30

105-45

70/60

(70+60)/2

70

60

1,16<1,7

65

Поверхность нагрева теплообменника H

м2

Qпв .
k • t • b

212 • 103 .
3000 • 65 • 0,85

1,28

Принимаем горизонтальный водоводяной подогреватель ВВП-80

H=2,26 м2, S=0,0018 м2, G=35 т/ч,

L=4410 мм, H=250 мм, D=89 мм


Расчет деаэратора (поз.10)

Д’пр = 0,154 кг/с

tда = 104,8 оС

Дда = 0,58 кг/с

tда = 196 оС

Gк = 6,71 кг/с

tда = 80 оС

Gхво = 3,44 кг/с

tда = 45 оС

Gда = 10,76 кг/с

tда = 104,8 оС

Наименование величин

Обозн.

Ед изм.

Расчетная формула или обоснование

Расчет

Значе-ние

коэффициент потерь тепла в окружающую среду

д


принимается
0,98
Средняя температура воды в деаэраторе

t'ср

C

(Gк • tк + Gхво • tхво)
(Gк + Gхво)

6,62 • 73,3 + 3,44 • 45
6,62 + 3,44

64,47
Среднее теплосодержание воды в деаэраторе

i'ср

кДж/кг

t'ср • С

67,5 • 4,19 270
Производительность деаэратора

Дд

кг/с

Gпв + Gут

9 + 1,76 10,76
Количество пара, необходимое для деаэоации

Ддiд - ((Gк + G'хво) • i'срд) – Д'пр • i"2
i"1

0,58

10,76•439,4 – ((6,71+3,44)•270•0,98)–0,154•2700
2788

Диаметр паропровода на деаэрацию

dyда

мм

80

(83)

Прнимаем к установке деаэратор атмосферный смешивающего типа ДСА-50

производительность колонки 50 т/ч, давление греющего пара 1,5 атм, температура воды 104 C


Расчет производительности котельной

Наименование величин

Обозн.

Ед изм.

Расчетная формула или обоснование

Расчет

Значение

Производительность котельной расчетная

Др

кг/с

Дт + Дп + Дд + Дсн + Дср

5,18 + 2,94 + 0,58 + 0,09 + 0,09 8,88
Процент загрузки работающих паровых котлов

Кзаг

%

р / Д') • 100%

(8,88 / 9 ) • 100 98,7

2. Расчет химводоподготовки


Основной задачей подготовки воды в котельных является борьба с коррозией и накипью. Коррозия поверхностей нагрева котлов подогревателей и трубопроводов тепловых сетей вызывается кислородом и углекислотой, которые проникают в систему вместе с питательной и подпиточной водой.

Качество питательной воды для паровых водотрубных котлов с рабочим давлением 1,4МПа в соответствии с нормативными документами должно быть следующим:

- общая жесткость 0,02мг.экв/л,

- растворенный кислород 0,03мг/л,

- свободная углекислота - отсутствие.

При выборе схем обработки воды и при эксплуатации паровых котлов качество котловой (продувочной) воды нормируют по общему солесодержанию (сухому остатку): величина его обуславливается конструкцией сепарационных устройств, которыми оборудован котел, и устанавливается заводом изготовителем.


Наименование Обозн. ед. изм.
Река

Днестр
Сухой остаток

Sив

мг/л 505
Жесткость карбонатная

Жк

мг.экв/л 5,92
Жесткость некарбонатная

Жнк

мг.экв/л 1,21

2.1. ВЫБОР СХЕМЫ ПРИГОТОВЛЕНИЯ ВОДЫ

Выбор схемы обработки воды для паровых котлов проводится по трем основным показателям:


Величине продувки котлов


Жесткость исходной воды

Жив = Жк + Жнк = 5,92 + 1,21 = 7,13 мг.экв/л


S определяется по графику рис 6. [2]. S = 60 мг/кг.


Сухой остаток обработанной воды.

Sов = Sив + S = 505 + 60 = 565 мг/л


Доля химически очищенной води в питательной

0 = Gхво / Дк = 4,2 / 8,95 = 0,47


Продувка котлов по сухому остатку:

Рп=( Sов • 0 • 100%)/(Sк.в - Sов0)=565 • 0,47 • 100 / (3000-565 • 0,47) = 9,7%

Sк.в - сухой остаток котловой воды, принимается по данным завода изготовителя котлов


9,7% < 10% - принимаем схему обработки воды путем натрий-катионирования.


Относительной щелочности котловой воды


Относительная щелочность котловой:

Щ = (40 • Щi • 100 %) / Sов =40 • 5,92 •100 / 565 = 41,9 %

где 40 - эквивалент Щ мг/л

Щi- щелочность химически обработанной воды, мг.экв/л, принимается для метода
Na-катионирования, равной щелочности исходной воды (карбонатной жесткости).


20% < 41,9% < 50% - возможно применение Na-катионирования с нитратированием, дополнительное снижение щелочности не требуется.


По содержанию углекислоты в паре


Количество углекислоты в паре:

Суг=22 • Жк • 0 • ('+")=22 • 5,92 • 0,47• (0,4+0,7)=67,39 мг/л

где ' - доля разложения НСO3 в котле, при давлении 1,4МПа принимается равной 0,7

'' - доля разложения НСO3 в котле, принимается равной 0,4


67,39мг/л > 20мг/л - необходимо дополнительное снижение концентрации углекислоты.


К установке принимается обработка воды по схеме двухступенчатого Na-катионирования.

2.2. РАСЧЕТ ОБОРУДОВАНИЯ ВОДОПОДГОТОВИТЕЛЬНОЙ УСТАНОВКИ

Для сокращения количества устанавливаемого оборудования и его унификации принимают однотипные конструкции фильтров для первой и второй ступени. Для второй ступени устанавливаем два фильтра: второй фильтр используется для второй ступени в период регенерации и одновременно является резервным для фильтров первой ступени катионирования.


Скорость фильтрования принята в зависимости от жесткости исходной воды

Жив = 7,13 мг.экв/л => ф = 15 м/ч [2].


Коэффициент собственных нужд химводоочистки

Кс.н.хво = 1,1


Количество сырой воды, поступающей на химводоочистку

Gс.в = Кс.н.хво • Gхво = 1,1 • 3,44 = 3,78 кг/с


Площадь фильтров

F'ф = Gс.в / ф =3,78 • 3,6 / 15 = 0,9 м2


К установке принимается 2 фильтра

Fф = F'ф / 2 = 0,9 / 2 = 0,45 м2


Диаметр фильтра

d'ф = = = 0,76 м


К установке принимаем катионовые фильтры № 7

Диаметр фильтра dф = 816 мм; высота сульфоугля l = 2 м.

Производительность фильтров I ступени GI = 5 т/ч

Производительность фильтров II ступени GII = 20 т/ч

Скорость фильтрования I ступени I = 9 м/ч

Скорость фильтрования II ступени II = 30 м/ч


Полная площадь фильтрования

Fфд = ( • dф2 / 4 ) • 2 = (3,14 • 0,8162 / 4) • 2 = 1,05 м2


Полная емкость фильтров

Е = 2 •  • dф2 • hкат • l / 4 = 2• 3,14 • 0,8162 • 300 • 2/ 4 = 627 мг.экв


Период регенерации фильтров

Т = Е / Gс.в • Жив = 627 / 5,75 • 3,6 • 7,13 = 4,25 ч

Число регенераций в сутки n = 6 раз.


Расход соли на 1 регенерацию:

Мсоли =  • dф2 • hкат • l • b / 4 • 1000 = 3,14 • 0,8162 • 300 • 2• 200 / 4 • 1000 = 62,72 кг


Суточный расход соли

Gсоли = Мсоли • n = 62,72 • 6 = 376,32 кг

3. Расчет и выбор насосов


Подбор питательных насосов


В котельных с паровыми котлами устанавливаются питательные насосы числом не менее двух с независимым приводом. Питательные насосы подбирают по производительности и напору.


Напор создаваемый питательным насосом:

Нпн=10 • Р1 + Нэкс = 10 • 12 + 7 + 15 = 142 м.в.ст.

где Р1 - избыточное давление в котле, Р1 =1,4 МПа = 12 атм.

Нэк- гидравлическое сопротивление экономайзера, принимаем Нэк = 7 м.в.ст.

Нс – сопротивление нагнетающего трубопровода, принимаем Нс=15 м.в.ст.

Производительность всей котельной, Д' = 9,0 кг/с = 32,4 т/ч


Принимаем 3 электрических насоса 2,5 ЦВМ 0,8 производительностью 14 м3/ч, полный напор 190 м.в.ст. и 2 насоса с паровым приводом типа 2ПМ-3,2/20 производительностью 3,2 м3/ч, напор 200 м.в.ст.


Подбор сетевых насосов


Напор сетевых насосов

Hснп + Нс = 15 + 30 = 45 м.в.ст.

где Нп- сопротивление бойлера теплофикации, принимаем Нэк = 15 м.в.ст.

Нс – сопротивление сети и абонента, принимаем Нс = 30 м.в.ст.

Расход сетевой воды Gсет=117,7 кг/с = 423,72 т/ч


К установке принимаем 2 сетевых насоса типа 10CD-6 производительностью 486 м3/ч, напор 74 м.в.ст.


Подбор конденсатного насоса


Напор развиваемый конденсатным насосом

Нкн = 10 • Рд + Нскд = 10 • 1,2 + 15 + 7 = 34 м.в.ст.

где Рд - давление в деаэраторе, Рд =0,14 МПа = 1,2 атм.

Нск – сопротивление нагнетающего трубопровода, принимаем Нск=15 м.в.ст.

Нд – высота установки деаэратора, принимаем Нд = 7 м.

Количество конденсата Gк = 6,71 кг/с = 24,16 т/ч


К установке принимаем 2 конденсатных насоса типа КС10-55/2а, напор 47,5 м.в.ст.


Подбор подпиточного насоса


Напор развиваемый насосом

Нпс = Рд + Нскд = 1,2 + 15 = 16,2 м.в.ст.

где Рд - давление в деаэраторе, Рд =0,14 МПа = 1,2 атм.

Нск – сопротивление нагнетающего трубопровода, принимаем Нск=15 м.в.ст.

Количество подпиточной воды Gк = 1,76 кг/с = 6,34 т/ч


К установке принимаем 2 насоса типа К8/18, производительность 8 м3/ч, напор 18 м.в.ст.


Подбор насоса сырой воды


Напор развиваемый насосом

Нсв = Нсктохво = 20 + 20 + 5 = 45 м.в.ст.

где Нто- сопротивление теплообменников, принимаем Нэк = 20 м.в.ст.

Нск – сопротивление нагнетающего трубопровода, принимаем Нск=20 м.в.ст.

Нхво – сопротивление фильтров ХВО, принимаем Нск=5 м.в.ст.


Количество сырой воды Gхво = 11,18 кг/с = 40.25 т/ч


К установке принимаем 2 насоса типа К-80-50-200, производительность 50 м3/ч, напор 50 м.в.ст.

4. АЭРОДИНАМИЧЁСКИЙ РАСЧЕТ


Наименование величин Обозн. Ед. изм. Знач. Примечание
температура уходящих газов

tух

оС

200

из


расчета


котла

температура холодного воздуха

tхв

оС

-30
коэфф. избытка воздуха в топке

т


1,4
коэфф. избытка воздуха в ВЭК

ух


1,6
коэфф. избытка воздуха в трубе

тр


1,7
средняя скорость уходящих газов

ух

м/с 8
действительный объем уходящих газов

Vг

м3/кг

11,214
низшая теплота сгорания топлива

Qнр

ккал/кг 6240
расход топлива 1 котлом b кг/с 0,325

4.1. Расчет газового тракта (расчет тяги)


Температура газов в начале трубы:

tтр = tухух + (тр -ух) • tв = 200 • 1,6 + (1,7-1,6)•30 = 190 оС

тр 1,7

где tв – температура воздуха в котельной tв = 25 оС


Сопротивление трения уходящих газов:

hтр =  • (l /dэкв) • (ух 2 / 2 • 9,8) • г = 0,03 • (18 / 1) • (82 / 2 • 9,8) • 0,78= 1,38 мм в.ст.

где г - плотность газов при температуре 190 оС г = 0,78 кг/м3

l – длина газохода по чертежу, l = 18 м.

dэкв – эквивалентный диаметр газохода 1000 х 1000 мм, dэкв = 1 м.

 - коэффициент трения для стальных футерованных газоходов, = 0,03


Потеря давления на местные сопротивления

hм =  • (ух / 2• 9,81) • г = 5,8 • (82 / 2 • 9,81) • 0,78 = 14,76 мм.в.ст.

где  - сумма коэффициент местных сопротивлений по тракту воздуха, =5,8

патрубок забора воздуха =0,2; плавный поворот на 90°(5 шт.) =0,25*5=1,25;

резкий поворот на 90° =l,l; поворот через короб =2, направляющий аппарат =0,1;

диффузор =0,1; тройник на проход - 3 шт. =0,35*3=1,05


Полное аэродинамическое сопротивление газового тракта

h = hм + hтр + hз + hзас = 14,76 + 1,38 + 63 + 1,5 = 80,64 мм.в.ст.

где hз – сопротивление золоуловителя hз = 63 мм.в.ст.

hзас – сопротивление заслонок hзас = 1,5 м.в.ст.


6. Сечение газоходов

fг = Vг • b • n • (273 + tтр ) =11,214 • 0,325 • 1 • (273+190) = 0,77 м2

273 • ух 273 • 8

где n – число котлов


Эквивалентный диаметр газохода

dэкв = = = 0,99 м2

4.2. Расчет самотяги дымовой трубы


В зависимости от расхода топлива b= 1,17 т/ч, зольности Аn = 1,76, содержания серы Sn = 0,08

высота дымовой трубы принимается H=30 м.


Скорость газов в дымовой трубе принимается wтр = 10 м/с


Максимальная часовая производительность котельной

Qк = b • n • Qнр = 0,325 • 5 • 6240 • 0,98 = 9600 ккал/ч


Охлаждение газов в трубе

tтр = = =0,1 оС/м


Внутренний диаметр трубы

dвн = = == 0,87 м


Наружный диаметр трубы

dн = dвн + 0,02 • Н = 0,87 + 0,02 • 30 = 1,47 м


Средний расчетный диаметр

dср = 2 • dн • dвн / (dвн + dн) = 2 • 1,47 • 0,87 / (1,47 + 0,87) = 1,09 м


Потеря напора на трение в дымовой трубе

hтр= • (H / dср) • (2 / 2•9,81) • = 0,03 • (30/1,09) • (102/2•9,81) • 0,78 = 3,28 мм.в.ст.


Потеря напора на выходе из дымовой трубы

hвых =  • • wтр2 / 2 • 9,81 = 1 • 0,87 • 102 / 2•9,81 = 4,43 мм.в.ст.


Сопротивлений дымовой трубы

hд.тр = hтр + hвых = 3,28 + 4,43 = 7,71 мм.в.ст.


Теоретическая тяга дымовой трубы

P = H • 273 • 1,3 • ( 1 1 ) • hбар =

(273 + tхв) (273 + tтр) – ( tтр • Н /2) 760


= 30 • 273 • 1,3 • ( 1 1 ) • 760 = 21,29 мм.в.ст.

(273 - 30) (273 + 190) – ( 0,1 • 30 /2) 760

4.3. Расчет дымососов и дутьевых вентиляторов


Расчетный напор дымососа

hдым = hм + hтр + hд.тр + hк + hз + hэк - P =

= 14,76 + 1,38 + 7,71 + 32 + 63 + 16 – 21,29 = 113,56 мм.в.ст.


Расчетная производительность дымососа, м3/с (М3/2)

Vдым = Vг • b • (273 + tтр) • 1.1 / 273 =

= 11,214 • 0,314 • (273 + 190) • 1,1 / 273 = 6,57 м3/с = 23,65•103 м3


Мощность потребляемая дымососом

Nдым = Vг • hдым •1,1 / 102 •  = 11,214 • 113,56 • 1,1 / 102 • 0,98 = 14 кВт


Напор вентилятора

hдв = hсл + hв = 60 мм.в.ст.

где hсл – сопротивление слоя лежащего на решетке hсл = 60 мм.в.ст.

hв – сопротивление воздуховодов, принебрегаем.


Производительность вентилятора

Vдв = 1,1 • Vг • т • b • (1 – q4 / 100) • ((273 + tхв) / 273) =

= 1,1 • 11,214 • 1,4 • 0,325 • (1 – 10/100) •(( 273 – 30 ) / 273) = 4,49 м3/с = 16,16•103 м3


Принимаем вентилятор типа ВД-Б производительностью 10•104 м3/ч, напор 172 кгс/см2


Литература


1. Роддатис К.Ф. Котельные установки. М.: Энергия, 1975. 488с

2. Лумми А.П. Методические указания к курсовому проекту "Котельные установки". Свердловск: УПИ. 1980. 20с.

3. Сидельников Л.Н, Юренев В.Н. Котельные установки промышленных предприятий. М.: Энергоатомиздат, 1988.

4. Производственные и отопительные котельные. /Е.Ф. Бузников, К.Ф. Роддатис, Э.Я.Берзиньш.- 2-е изд., перераб. – М.: Энергатомиздат, 1984.-с. 248., ил 4. Зыков А.К. Паровые и водогрейные котлы: Справочное пособие. – М.: Энергоатомиздат, 1987.

5. http:/www.kotel – официальный сайт завода "Бийскэнергомаш".





29-04-2015, 04:16

Страницы: 1 2
Разделы сайта