Теплоснабжение промышленного района города

height="181" align="ABSMIDDLE" /> постоянный коэффициент для воды Удельное линейное падение давления

Предварительный расчет диаметров трубопроводов производится по формуле:

(23)

Расчет действительного удельного падения давления производится по формуле:

                                (24)

где – уточненный диаметр трубопровода, м.

Первый участок главной магистрали:

Уточняем по ГОСТу диаметр:

Второй участок главной магистрали:

Уточняем по ГОСТу диаметр:

Третий участок главной магистрали:

Уточняем по ГОСТу диаметр:

При полученном диаметре уточняется величина местных потерь. При этом принимается, что на участке через каждые 100 м установлены компенсаторы, на магистрали у ответвления и на ответвлении устанавливаются задвижка и тройники.

Определяется эквивалентная длина местных сопротивлений , м:

(25)

где – постоянный коэффициент (таблица 5-2 [1]),

– сумма местных сопротивлений на участке (приложение 10 [1]).

Для тепловой сети выбираем следующую арматуру:

  • компенсатор сальниковый разгруженный,

  • задвижки,

  • тройники.

Постоянный коэффициент:

Длина местных сопротивлений на первом участке:

На линии по длине устанавливаются 14 компенсаторов, 3 задвижки и 2 тройника. Эквивалентную длину местных сопротивлений определим по формуле (25):

Длина местных сопротивлений на втором участке:

На линии по длине устанавливаются 4 компенсатора, 1 задвижка и 2 тройника.

Длина местных сопротивлений на третьем участке:

На линии по длине устанавливаются 4 компенсаторов, 1 задвижка и 2 тройника.

Определяется падение давления или напора в подающей линии на участке :

(26)

(27)

где

Падение давления на первом участке:

Падение давления на втором участке:

Падение давления на третьем участке:


2.2.3 Гидравлический расчет ответвлений:

Определяется диаметр по формуле

По ГОСТу определяется диаметр:

Расчет действительного удельного падения давления определяется по формуле (24):

Эквивалентная длина местных сопротивлений рассчитывается по формулам (25):

Падение давления или напора на ответвлении определяется по формулам (26) и (27):


2.2.4 Гидравлический расчет ВТС на предприятие:

Определяется диаметр по формуле (23)

По ГОСТу уточняем диаметр:

Действительное падение давления рассчитывается по формуле (24):

Эквивалентная длина местных сопротивлений рассчитывается по формулам (25):

Падение давления или напора на ответвлении определяется по формулам (26) и (27):

По результатам гидравлического расчета для водяной тепловой сети строится пьезометрический график, представленный на рис. 5.


2.2.5 Определение напора насоса:

К температуре воды добавим 30 для предотвращения вскипания. Получим температуру . По таблице для воды и водяного пара [2] определяем давление насыщения при этой температуре :

или

Для предотвращения вскипания в ПВК добавляем 10 м и 25 м – статический напор. В результате напор насоса будет равен:


2.3 Гидравлический расчет паровой сети.

На предприятие для технологических нужд подается пар из отбора турбины. Расход пара определяется по максимальному часовому расходу тепла, подаваемого потребителю.

(28)

где – энтальпия пара у потребителя, ;

– энтальпия конденсата, возвращаемого от потребителя, .

Определяем удельное падение давления главной магистрали:

(29)

где l – длина трубопровода, м.

Средняя плотность пара:

(30)

где – плотность пара в начале участка,

– плотность пара в конце участка,

Определяем диаметр паропровода по формуле:

(31)

где – постоянный коэффициент (таблица 5-2 [1])

Уточняем по ГОСТу диаметр:

Определяем действительное удельное падение в паровой сети по формуле (24):

Эквивалентная длина местных сопротивлений рассчитывается по формулам (25):

Падение давления или напора на ответвлении определяется по формулам (26) и (27):

Определяем давление у потребителя:

(32)

где – давление пара в начале участка, Па.

Расчет закончен, так как выполнено условие:


2.4 Гидравлический расчет конденсатопровода.

Определяется расход конденсата, возвращаемого на ТЭЦ,

(33)

где – коэффициент возврата конденсата

Определяем диаметр конденсатопровода по формуле (23):

Уточняем по ГОСТу диаметр:

Определяем действительное удельное падение в паровой сети по формуле (24):

Эквивалентная длина местных сопротивлений рассчитывается по формулам (25):

Падение давления или напора на ответвлении определяется по формулам (26) и (27):

Вывод: Гидравлический расчет показал, что для обеспечения поселка и предприятия необходимым расходом сетевой воды необходимы следующие диаметры трубопроводов: на первом участке главной магистрали на втором участке главной магистрали на третьем участке главной магистрали на ответвлениях в кварталах для ВТС на предприятие

Диаметр трубопровода, идущего на предприятие с ТЭЦ будет равен а диаметр конденсатопровода


ЗАКЛЮЧЕНИЕ


В ходе проделанной работы были произведены необходимые расчеты для проектирования системы теплоснабжения и выбора оборудования мини-ТЭЦ.

При расчете тепловой нагрузки района были определены следующие величины:

  1. расчетный расход тепла на отопление:

  2. расчетный расход тепла на вентиляцию:

  3. расчетный расход тепла на горячее водоснабжение:

Температуры сетевой воды, в зависимости от температуры наружного воздуха, определенные при расчете режимных графиков, сведены в таблицу 2.

В результате гидравлического расчета были определены необходимые расходы сетевой воды и выбраны диаметры трубопроводов водяной и паровой сети. Расход сетевой воды на вентиляцию составил расчетный расход воды на вентиляцию составил расчетный расход воды на горячее водоснабжение составил Общий расход сетевой воды на поселок и предприятие составил Также была составлена схема водоснабжения поселка, представленная на рисунке 4. При построении пьезэлектрического графика водяной сети был определен напор насоса, где

В результате технико-экономического расчета определили издержки по транспорту тепла, которые составили

Для обеспечения тепловой нагрузки одного из предприятия располагается мини-ТЭЦ. На мини-ТЭЦ установлены два паровых котла К 50-40-1, две турбины Р-2,5-35/3М. Коэффициент теплофикации составил =0,45. Также были выбраны деаэратор подпиточной воды котла – ДА-100 и деаэратор подпиточной воды аккумуляторного бака – ДА-300. В качестве сетевого подогревателя используем кожухотрубчатый пароводяной теплообменник с числом ходов z=2; диаметром кожуха D =1200мм; долиной теплообменных труб L = 6м.


4 ВЫБОР И РАСЧЕТ ОСНОВНОГО ОБОРУДОВАНИЯ МИНИ-ТЭЦ


4.1 Выбор типа и числа котлов.

4.1.1 Определяется расход теплоты, который необходим для подогрева сетевой воды, мВт:

,

(44)

где – расход тепла на отопление, вентиляцию и горячее водоснабжение поселка, мВт.

,

Определяем требуемый расход пара на подогрев воды кг/с

(45)

где – энтальпия конденсата пара сетевых подогревателей, кДж/кг: = 419 кДж/кг;

– энтальпия конденсата пара, поступившего на сетевой подогреватель, кДж/кг: = 2777,1 кДж/кг;

– КПД соответственно сетевого подогревателя и котла.

Определяем расход пара на деаэрацию и подогрев сырой воды кг/с

(46)

где – расход пара на технологические нужды, кг/с, (рассчитано выше).

Определяется величина потерь внутри мини-ТЭЦ, , кг/с:

Определяется количество пара, производимого на мини-ТЭЦ, , кг/с:

(47)

или


4.1.2 По рассчитываемому количеству пара, необходимого для покрытия тепловых нагрузок поселка и предприятий, выбирается тип и количество паровых котлов, устанавливаемых на мини-ТЭЦ.

Выбор котла производится по таблице 8.24 [3]. В результате выбрали котел К-50-40-1. Параметры котла представлены в таблице 3.


Таблица 3. Параметры и производительность котла К-50-40-1.

Наименование

К-50-40-1.

Номинальная производительность, т/ч

Избыточное давление пара, мПа

Температура,

пара

питательной воды

50

4


440

145

Расчетное топливо Каменный уголь Бурый уголь

Температура,

горячего воздуха

Уходящих газов


262


300

146

Объем топочного пространства, м3

238

Таблица 3. (продолжение)


Наименование

К-50-40-1.

Барабан (диаметр и толщина стен), мм

число ступеней испарения

количество выносимых циклонов, шт

150040

3

2

Габаритные размеры котла в осях колонн, м

ширина

длина

наибольшая длина


6,33

8,9

20,5

Изготовитель ПО «Белгородский завод энергетического машиностроения»

Для покрытия необходимого расхода пара на мини-ТЭЦ устанавливает два котла К-50-40-1 общей производительностью


4.2 Выбор типа и числа турбин.

Мини-ТЭЦ оборудуется на месте бывших котельных, поэтому экономически выгодно устанавливать турбины с противодавлением.

Выбор турбин производится по таблице 1.5 [4]. В результате выбрали турбину Р-2,5-35/3М. Характеристики турбины представлены в таблице 4.

Таблица 4. Технические характеристики турбины Р-2,5-35/3М.


Характеристика

ТурбинаР-2,5-35/3М

Мощность, кВт

номинальная

максимальная


2500

2750

Номинальные начальные параметры

абсолютное давление, мПа

температура,


3,43

435

Частота вращения ротора, об/мин 3000
Номинальное противодавление, мПа 0,29
Номинальный расход пара, т/ч 22,3
Максимальный расход пара, т/ч 27,0
Изготовитель ПО «Калужский турбинный завод»

На мини-ТЭЦ установим две турбины с общим номинальным расходом пара

Коэффициент теплофикации рассчитывается по формуле:

где – расход пара, идущий на турбины, т/ч;

D – расход пара на мини-ТЭЦ,


4.3 Расчет редуционно-охладительных установок.

P1; t1; i1




Рисунок 6. Схема РОУ

1 – редукционный охладитель

2 – охладитель


Z, кг



дренаж



4.3.1 Рассчитаем РОУ для пара, идущего на технологические нужды предприятия.

Параметры первичного пара имеют следующие величины:

– давление первичного пара;

– температура первичного пара;

– энтальпия первичного пара.

Параметры вторичного пара имеют следующие величины:

– давление вторичного пара;

– температура вторичного пара;

– энтальпия вторичного пара.

– расход вторичного пара.

Доля испаряющейся в ОУ воды:

Определяется количество воды, необходимое для охлаждения 1 кг первичного пара , кг/кг:

(49)

где – энтальпия охлаждающей воды, кДж/кг: =419кДж/кг

Определяется расход охлаждающей воды , кг/с:

(50)

Определяется потребное количество первичного пара ; кг/с

                                                (51)

Определяется потребное количество воды, сливаемой в дренаж , кг/с:

(52)


4.3.2 Рассчитаем РОУ для пара, идущего на сетевые подогреватели.

Параметры первичного пара имеют следующие величины:

– давление первичного пара;

– температура первичного пара;

– энтальпия первичного пара.

Параметры вторичного пара имеют следующие величины:

.

Доля испаряющейся в ОУ воды:

Определяется количество воды, необходимое для охлаждения 1 кг первичного пара , кг/кг, по формуле (49):

Определяется расход охлаждающей воды , кг/с, по формуле (50):

Определяется потребное количество первичного пара , кг/с

(51)

Определяется потребное количество воды, сливаемой в дренаж , кг/с:

(52)


4.3.2 Рассчитаем РОУ для пара, идущего на сетевые подогреватели.

Параметры первичного пара имеют следующие величины:

– давление первичного пара;

– температура первичного пара;

– энтальпия первичного пара.

Параметры вторичного пара имеют следующие величины:

.

Доля испаряющейся в ОУ воды:

Определяется количество воды, необходимое для охлаждения 1 кг первичного пара , кг/кг, по формуле (49):

Определяется расход охлаждающей воды , кг/с, по формуле (50):

Определяется потребное количество первичного пара , кг/с

Определяется потребное количество воды, сливаемой в дренаж , кг/с, по формуле(51):


4.3 Расчет сетевого подогревателя.

Сетевой подогреватель должен нагреть воду в количестве от температуры до паром с давлением и температурой .

При средней температуре вода имеет следующие физико-химические характеристики:

Физико-химические характеристики конденсата при температуре конденсации:

Определяем тепловые нагрузки аппарата Q, кВт:

(53)

Определяется средняя разность температур :

                                         (54)

Определяется ориентировочное значение поверхности , м2:

(55)

где – ориентировочный коэффициент теплопередачи, Вт/м2К.

В качестве сетевого подогревателя выбираем кожухотрубчатый теплообменник. В соответствии с таблицей 2.9 [5] теплообменник имеет следующие параметры:

диаметр кожуха:

диаметр теплообменных труб:

число ходов: z = 2

общее число труб: n = 1658 штук

длина теплообменной трубы: L=6000мм

поверхность теплообмена: F = 625м2.

Определяется действительное число Reв :

(56)

Коэффициент теплоотдачи к воде определим по уравнению:

(57)


Коэффициент теплоотдачи от пара, конденсирующегося на пучке вертикально расположенных труб, определяется из уравнения:

(58)

Сумма термических сопротивлений стенки труб из нержавеющей стали и загрязнений со стороны воды и пара равна:

Определяется коэффициент теплопередачи К, Вт/(м2К):

Требуемая поверхность теплопередачи определяется по формуле (45):

Затем по поверхности теплообмена:

(59)

Теплообменник с номинальной поверхностью F = 625м2 подходит с запасом

Диаметр присоединяемых штуцеров определяется по таблице 2.6 [5].

диаметр штуцеров для трубного пространства:

диаметр штуцеров для межтрубного пространства:

диаметр штуцера для слива конденсата пара


4.5 Выбор деаэраторных установок

Выбор деаэраторов производится по таблице 12.37 [3].

Для подпиточной воды котлов выбираем атмосферный деаэратор ДА-100 со следующими характеристиками:

номинальная производительность: 100т/ч

рабочее давление: 0,12МПа

температура деаэрированной воды: 104

изготовитель: ПО “Красный котельщик”

Для подпиточной воды аккумуляторного бака выбираем атмосферный деаэратор ДА-300 со следующими характеристиками:

номинальная производительность: 300т/ч

рабочее давление: 0,12МПа

температура деаэрированной воды: 104

изготовитель: ПО “Красный котельщик”


4.6 Норма качества воды.

Требования к качеству воды после каждой ступени очистки определяется в таблице 3.3 и таблице 3.4 [3].

Полученные нормы качества сведем в таблицу 4.


Таблица 4. Нормы качества воды.

Наименование

Вода после 1-ой ступени ХВО

Вода после 2-ой ступени ХВО

Содержание взвешенных частиц, мг/кг прозрачность по шрифту 40 не допускается
Содержание железа в пересчете на мкг/кг 300 100

Содержание растворенного О2 мкг/кг

50 30

Значение рН при t=25

от 7 до 8,5 от 8,5 до 9,5
Содержание свободной углекислоты не допускается не допускается

Рабочий поселок около города Астрахань, поэтому водозабор может происходить из реки Волги, состав воды для которой следующий:

взвешенные вещества, мг/кг: 41,6

сухой остаток, мг/кг: 299

минеральный остаток. мг/кг: 277,2

общая жесткость, мг-экв/кг: 3,8

карбонатная жесткость, мг-экв/кг: 2,6


Вывод: В ходе решения данной главы были выбраны следующие элементы мини-ТЭЦ: два паровых котла К-50-40-1 общей паропроизводительностью 100т/ч, две турбины З-2,5-35/3М. Коэффициент теплсодержания данной ТЭЦ =0.45/

Также был выбран деаэратор подпиточной воды котлов: ДА-100 и деаэратор подпиточной воды аккумуляторного бака: ДА-300.

Были рассчитаны редукционно-охладительные устройства. РОУ пара, идущего на предприятие, потребляет 0,279 кг/с свежей охлаждающей воды, а РОУ пара, идущего на сетевой подогреватель, расходует 3,92 кг/с охлаждающей воды.

Нормы качества воды после каждой ступени ХВО сведены в таблицу 4.

В качестве сетевого подогревателя используем кожухотрубный теплообменник с числом ходов z=2; диаметром кожуха D=1200 мм; длиной теплообменных труб L=6м.




29-04-2015, 04:16

Страницы: 1 2
Разделы сайта