В течение жизни размер звезды сильно меняется. Она начинает свою эволюцию как сжимающееся газовое облако огромного размера, затем длительное время остается в виде нормальной звезды, а в конце своей жизни увеличивается в десятки раз, становясь гигантом, сбрасывает оболочку и превращается в маленький «белый карлик» или совсем крохотную «нейтронную звезду». См. также НЕЙТРОННАЯ ЗВЕЗДА; ПУЛЬСАР.
Звездные населения. В 1944 американский астроном немецкого происхождения В.Бааде предложил разделить звезды на два типа, которые он назвал Населением I и Населением II. К Населению I он отнес молодые звезды и связанные с ними межзвездные газ и пыль, которые наблюдаются в спиральных рукавах галактик и рассеянных скоплениях. Население II состоит из старых звезд, встречающихся в шаровых скоплениях, эллиптических галактиках и центральных областях спиральных галактик. Ярчайшие звезды Населения I – это голубые сверхгиганты, которые раз в 100 ярче, чем ярчайшие звезды Населения II, красные гиганты. У звезд Населения I значительно выше содержание тяжелых элементов. Концепция звездных населений имела большое значение для развития теории эволюции звезд.
Движения звезд. Обычно движение звезды характеризуют с двух точек зрения: как орбитальное движение вокруг центра Галактики и как относительное движение в группе ближайших звезд. Например, Солнце обращается вокруг центра Галактики со скорость ок. 240 км/с, а по отношению к окружающим его звездам движется значительно медленнее, со скоростью ок. 19 км/с.
Основной системой отсчета для измерения движения звезд служит Галактика в целом. Но для земного наблюдателя обычно удобнее использовать систему отсчета, связанную с центром Солнечной системы, фактически – с Солнцем. По отношению к Солнцу ближайшие звезды движутся со скоростями от 10 км/с и выше. Но расстояния до звезд так велики, что фигуры созвездий изменяются лишь за многие тысячелетия. Перемещение звезд впервые обнаружил в 1718 Э.Галлей, сравнивая их положения, точно определенные им в Гринвиче, с теми, которые указал в своем каталоге Птолемей (2 в. н.э.).
Угловое перемещение звезды на небесной сфере по отношению к далеким звездам называют ее «собственным движением» и выражают обычно в угловых секундах за год. Так, собственное движение Арктура 2,3ўў/год, а Сириуса 1,3ўў/год. Наибольшее собственное движение у звезды Барнарда, 10,3ўў/год.
Чтобы вычислить линейную скорость звезды в километрах в секунду, используют формулу T = 4,74 m/p, где T – тангенциальная скорость (т.е. компонента полной скорости, направленная поперек луча зрения), m –собственное движение в секундах дуги за год и p – параллакс.
Лучевая скорость. Скорость звезды вдоль луча зрения, которую называют лучевой скоростью, измеряется по доплеровскому смещению линий в ее спектре с точностью до долей километра в секунду. Смещение линий в красную сторону спектра говорит об удалении звезды от Земли, а в голубую – о приближении. Скорости звезд не так велики, чтобы это привело к изменению цвета звезды, но быстрое движение далеких галактик весьма заметно меняет их цвет. Измерение доплеровского смещения линий – очень тонкая операция. В телескопе одновременно со спектром звезды на ту же пластинку фотографируют спектр лабораторного источника с точно известным положением линий. Затем с помощью измерительной машины, снабженной мощным микроскопом, с точностью до 1 мкм определяется смещение линий (Dl) в спектре звезды относительно тех же линий лабораторного источника с длиной волны l. Лучевая скорость звезды определяется по формуле V = cDl/l, где c – скорость света. Эта формула пригодна для нормальных звездных скоростей, но для быстро движущихся галактик она не подходит. Точность измерения лучевых скоростей звезд не зависит от расстояния до них, а всецело определяется возможностью получать хорошие спектры и точно измерять в них положение линий. Однако точность измерения тангенциальных скоростей звезд зависит не только от аккуратности измерения их собственного движения, но и от их параллакса, т.е. от расстояния до них: чем больше расстояние, тем ниже точность.
Пространственная скорость. Лучевая и тангенциальная скорости – это компоненты полной пространственной скорости звезды по отношению к Солнцу (ее легко вычислить по теореме Пифагора). Чтобы движение самого Солнца «не вмешивалось» в эту скорость, ее обычно пересчитывают по отношению к «местному стандарту покоя» – искусственной системе координат, в которой среднее движение околосолнечных звезд равно нулю. Скорость звезды по отношению к местному стандарту покоя называют ее «пекулярной скоростью».
Каждая из звезд обращается по орбите вокруг центра Галактики. Звезды Населения I обращаются по почти круговым орбитам, лежащим в плоскости галактического диска. Солнце и соседние с ним звезды тоже движутся по орбитам, близким к круговым, со скоростью около 240 км/с, завершая оборот за 200 млн. лет (галактический год). Звезды Населения II движутся по эллиптическим орбитам с различными эксцентриситетами и наклонениями к плоскости Галактики, приближаясь к галактическому центру в перигалактии орбиты и удаляясь от него в апогалактии. Основное время они проводят в районе апогалактия, где их движение замедляется. Но по отношению к Солнцу их скорости велики, поэтому их называют «высокоскоростными звездами».
Двойные звезды. Около половины всех звезд входит в состав двойных и более сложных систем. Центр масс такой системы движется по орбите вокруг центра Галактики, а отдельные звезды обращаются вокруг центра масс системы. В двойной звезде один компонент обращается вокруг другого в соответствии с гармоническим (третьим) законом Кеплера:
где m1 и m2 – массы звезд в единицах массы Солнца, P – период обращения в годах и D – расстояние между звездами в астрономических единицах. Обе звезды при этом обращаются вокруг общего центра масс, причем их расстояния от этого центра обратно пропорциональны их массам. Определив относительно окружающих звезд орбиту каждого из компонентов двойной системы, легко найти отношение их масс. См. также КЕПЛЕРА ЗАКОНЫ.
Многие двойные звезды движутся так близко одна к другой, что заметить их по отдельности в телескоп невозможно; их двойственность можно обнаружить только по спектрам. В результате орбитального движения каждая из звезд периодически то приближается к нам, то удаляется. Это вызывает доплеровское смещение линий в ее спектре. Если светимости обеих звезд близки, то наблюдается периодическое раздвоение каждой спектральной линии. Если же одна из звезд гораздо ярче, то наблюдается только спектр более яркой звезды, в котором все линии периодически колеблются.
Переменные звезды. Видимый блеск звезды может изменяться по двум причинам: либо изменяется светимость звезды, либо что-то ее загораживает от наблюдателя, например, вторая звезда в двойной системе. Звезды с изменяющейся светимостью делятся на пульсирующие и эруптивные (т.е. взрывающиеся). Существует два важнейших типа пульсирующих переменных – лириды и цефеиды. Первые, переменные типа RR Лиры, имеют примерно одинаковую абсолютную звездную величину и периоды короче суток. У цефеид, переменных типа d Цефея, периоды изменения блеска тесно связаны с их средней светимостью. Оба типа пульсирующих переменных очень важны, поскольку знание их светимости позволяет определять расстояния. Американский астроном Х.Шепли использовал лириды для измерения расстояний в нашей Галактике, а его коллега Э.Хаббл использовал цефеиды для определения расстояния до галактики в Андромеде.
Эруптивные переменные бывают различным типов. Такие, как SS Лебедя, вспыхивают время от времени совершенно непредсказуемо. Взрывы новых звезд происходят очень редко, но мощно; при этом они не разрушают звезду, представляющую собой белый карлик в тесной двойной системе. Когда на его поверхности накапливается достаточно вещества, падающего с нормальной соседней звезды, оно взрывается. Это может происходить неоднократно. Сверхновые звезды взрываются только раз, но уж так, что по яркости сравниваются с целой галактикой. Такой взрыв почти полностью разрушает звезду. См. также НОВАЯ ЗВЕЗДА; СВЕРХНОВАЯ ЗВЕЗДА; ПЕРЕМЕННЫЕ ЗВЕЗДЫ.
Цвета звезд. Звезды имеют самые разные цвета. У Арктура желто-оранжевый оттенок, Ригель бело-голубой, Антарес ярко-красный. Доминирующий цвет в спектре звезды зависит от температуры ее поверхности. Газовая оболочка звезды ведет себя почти как идеальный излучатель (абсолютно черное тело) и вполне подчиняется классическим законам излучения М.Планка (1858–1947), Й.Стефана (1835–1893) и В.Вина (1864–1928), связывающим температуру тела и характер его излучения. Закон Планка описывает распределение энергии в спектре тела. Он указывает, что с ростом температуры повышается полный поток излучения, а максимум в спектре сдвигается в сторону коротких волн. Длина волны (в сантиметрах), на которую приходится максимум излучения, определяется законом Вина: lmax = 0,29/T. Именно этот закон объясняет красный цвет Антареса (T = 3500 K) и голубоватый цвет Ригеля (T = 18000 К). Закон Стефана дает полный поток излучения на всех длинах волн (в ваттах с квадратного метра): E = 5,67ґ10–8 T 4.
Спектры звезд. Изучение звездных спектров – это фундамент современной астрофизики. По спектру можно определить химический состав, температуру, давление и скорость движения газа в атмосфере звезды. По доплеровскому смещению линий измеряют скорость движения самой звезды, например, по орбите в двойной системе.
В спектрах большинства звезд видны линии поглощения, т.е. узкие разрывы в непрерывном распределении излучения. Их называют также фраунгоферовыми или абсорбционными линиями. Они образуются в спектре потому, что излучение горячих нижних слоев атмосферы звезды, проходя сквозь более холодные верхние слои, поглощается на некоторых длинах волн, характерных для определенных атомов и молекул.
Спектры поглощения звезд сильно различаются; однако интенсивность линий какого-либо химического элемента далеко не всегда отражает его истинное количество в атмосфере звезды: в значительно большей степени вид спектра зависит от температуры звездной поверхности. Например, атомы железа есть в атмосфере большинства звезд. Однако линии нейтрального железа отсутствуют в спектрах горячих звезд, поскольку все атомы железа там ионизованы. Водород – это главный компонент всех звезд. Но оптические линии водорода не видны в спектрах холодных звезд, где он недостаточно возбужден, и в спектрах очень горячих звезд, где он полностью ионизован. Зато в спектрах умеренно горячих звезд с температурой поверхности ок. 10 000 К самые мощные линии поглощения – это линии бальмеровской серии водорода, образующиеся при переходах атомов со второго энергетического уровня.
Давление газа в атмосфере звезды также имеет некоторое влияние на спектр. При одинаковой температуре линии ионизованных атомов сильнее в атмосферах с низким давлением, поскольку там эти атомы реже захватывают электроны и, следовательно, дольше живут. Давление атмосферы тесно связано с размером и массой, а значит и со светимостью звезды данного спектрального класса. Установив по спектру давление, можно вычислить светимость звезды и, сравнивая ее с видимым блеском, определить «модуль расстояния» (M - m) и линейное расстояние до звезды. Этот очень полезный метод называют методом спектральных параллаксов.
Показатель цвета. Спектр звезды и ее температура тесно связаны с показателем цвета, т.е. с отношением яркостей звезды в желтом и голубом диапазонах спектра. Закон Планка, описывающий распределение энергии в спектре, дает выражение для показателя цвета: C.I. = 7200/T – 0,64. У холодных звезд показатель цвета выше, чем у горячих, т.е. холодные звезды относительно ярче в желтых лучах, чем в голубых. Горячие (голубые) звезды выглядят более яркими на обычных фотопластинках, а холодные звезды выглядят ярче для глаза и особых фотоэмульсий, чувствительных к желтым лучам.
Спектральная классификация. Все разнообразие звездных спектров можно уложить в логичную систему. Гарвардская спектральная классификация впервые была представлена в Каталоге звездных спектров Генри Дрэпера, подготовленного под руководством Э.Пикеринга (1846–1919). Сначала спектры были расставлены по интенсивности линий и обозначены буквами в алфавитном порядке. Но развитая позже физическая теория спектров позволила расположить их в температурную последовательность. Буквенное обозначение спектров не изменили, и теперь порядок основных спектральных классов от горячих к холодным звездам выглядит так: O B A F G K M. Дополнительными классами R, N и S обозначены спектры, похожие на K и M, но с иным химическим составом. Между каждыми двумя классами введены подклассы, обозначенные цифрами от 0 до 9. Например, спектр типа A5 находится посередине между A0 и F0. Дополнительными буквами иногда отмечают особенности звезд: «d» – карлик, «D» – белый карлик, «p» – пекулярный (необычный) спектр.
Наиболее точную спектральную классификацию представляет система МК, созданная У.Морганом и Ф.Кинаном в Йеркской обсерватории. Это двумерная система, в которой спектры расставлены как по температуре, так и по светимости звезд. Ее преемственность с одномерной Гарвардской классификацией в том, что температурная последовательность выражена теми же буквами и цифрами (A3, K5, G2 и т.д.). Но дополнительно введены классы светимости, отмеченные римскими цифрами: Ia, Ib, II, III, IV, V и VI, соответственно указывающие на яркие сверхгиганты, сверхгиганты, яркие гиганты, нормальные гиганты, субгиганты, карлики (звезды главной последовательности) и субкарлики. Например, обозначение G2 V относится к звезде типа Солнца, а обозначение G2 III показывает, что это нормальный гигант с температурой примерно как у Солнца.
ГАРВАРДСКАЯ СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ
Спектральный класс Эффективная температура, К
Цвет
O 26000–35000
Голубой
В 12000–25000
Бело-голубой
А 8000–11000
Белый
F 6200–7900
Желто-белый
G 5000–6100
Желтый
К 3500–4900
Оранжевый
М 2600–3400
Красный
Последовательности звезд. В 1905–1913 Э.Герцшпрунг в Дании и Г.Рессел в США независимо нашли эмпирическую связь между температурой (спектральным классом) и светимостью звезд. Они обнаружили, что большинство звезд лежит вдоль широкой полосы на диаграмме температура – светимость. Эта полоса, названная «главной последовательностью», проходит от верхнего левого угла диаграммы, где находятся горячие и яркие О и В звезды, к правому нижнему углу, населенному холодными и тусклыми К и М карликами.
Открытие главной последовательности стало сюрпризом: было неясно, почему звезды с определенной температурой поверхности не могут иметь какой угодно размер, а следовательно и светимость. Оказалось, что радиус звезды и температура ее поверхности связаны друг с другом.
На диаграмме Герцшпрунга – Рессела обнаружилась и вторая последовательность – ветвь гигантов, широкой полосой отходящая от середины главной последовательности (класс G, абсолютная звездная величина +1) почти перпендикулярно ей в сторону верхнего правого угла диаграммы (класс М, абсолютная величина -1). На ветви гигантов лежат звезды большого размера и довольно высокой светимости, в отличие от карликов, населяющих главную последовательность. Они разделены «провалом Герцшпрунга».
В нижнем левом углу диаграммы расположились белые карлики – необычные звезды с высокой температурой поверхности, но низкой светимостью, что указывает на их очень маленький размер. В этих остатках эволюции нормальных звезд уже не происходит термоядерных реакций, и они медленно остывают.
Спустя несколько десятилетий после открытия Герцшпрунга и Рессела выяснилось, что у разных групп звезд диаграммы температура–светимость существенно различаются. Особенно ясно это прослеживается при сравнении звездных скоплений, в каждом из которых все звезды имеют одинаковый возраст. Диаграммы рассеянных скоплений, таких, как Гиады и Плеяды, в целом похожи на диаграмму околосолнечных звезд и резко отличаются от диаграмм шаровых скоплений, таких, как большое скопление в Геркулесе, где яркая часть главной последовательности отсутствует, а нижняя ее часть смыкается с ветвью гигантов, круто уходящей вверх, в область больших светимостей. Такие диаграммы оказались характерными для звезд Населения II, а диаграммы рассеянных скоплений типичны для звезд Населения I. Таким образом, диаграмма Герцшпрунга – Рессела служит важным инструментом для выяснения эволюционного статуса звездных населений.
Звездные скопления. Известны три различных типа звездных группировок: звездные ассоциации, шаровые скопления и рассеянные скопления (иногда их называют «открытыми» или «галактическими»). Звездные скопления очень ценны для астрофизики, поскольку это группы звезд, одинаково удаленных от нас и сформировавшихся одновременно из вещества одного облака. Звезды в пределах одного скопления различаются лишь исходной массой, что значительно облегчает изучение их эволюции.
Звездные ассоциации. Это относительно разреженные группировки звезд, разлетающихся от общего центра, где они, вероятно, родились. Если проследить их траектории обратно, то оказывается, что они «тронулись в путь» всего около миллиона лет назад – совсем недавно по звездным масштабам. Ассоциации расположены в спиральных рукавах Галактики, там же, где сконцентрировано межзвездное вещество, из которого формируются звезды. Известно менее ста ассоциаций, и все они состоят из молодых, ярких и массивных звезд в основном спектральных классов О и В. Звезды меньшей массы в ассоциациях тоже есть, но их сложнее распознать. Когда через несколько миллионов лет эволюция О и В звезд закончится, заметить на небе ныне известные ассоциации станет невозможно. Все говорит о том, что ассоциации – короткоживущие образования. Возможно, большая часть звезд в Галактике родилась именно в составе ассоциаций.
Рассеянные скопления. Замечательными представителями звездных скоплений более высокого порядка служат Плеяды, Гиады и Ясли. Если в ассоциациях наблюдается обычно не более 100
28-04-2015, 23:37