Исследование планеты Марс с помощью космических аппаратов

с аппаратом была потеряна связь, предположительно в результате отказа бортовой двигательной установки (ДУ).

Продолжая хронику неудачных полётов к Марсу, вспомним и российский "Марс-96", который, стартовав 16 ноября 1996 года, из-за отказа разгонного блока остался на низкой околоземной орбите и на следующий день сгорел в атмосфере над Южной Америкой.

Неудачно завершился и полёт американского аппарата MarsClimateOrbiter (в рамках программы Mars Surveyor '98). Стартовав 11 декабря 1998 года, он успешно добрался до красной планеты, но… 23 сентября 1999 года сгорел в атмосфере планеты в результате ошибки в навигационных расчётах.

И, наконец, стартовавшая 3 января 1999 года американская станция Mars Polar Lander (РН Delta-2) с двумя пенетраторами Deep Space 2 погибла при посадке 3 декабря 1999 года из-за недостатков конструкции посадочной системы.

Научная программа этого полёта предусматривала две независимые программы. Собственно станция MarsPolarLander (в рамках всё той же программы Mars Surveyor '98) была предназначена для посадки в районе Южной полярной шапки и исследования местности (панорамная стереофотосъёмка, метеорологические наблюдения, изучение климата полярных областей, а главное – определение химического состава полярной шапки и поиск льда в марсианском грунте). Экспериментальные пенетраторы DeepSpace 2 были разработаны в рамках программы Millenium и предназначались для поиска воды в грунте Марса.

Однако были и удачные пуски. Так, 7 ноября 1996 года стартовала американская АМС MarsGlobalSurveyor (MGS). Это был аппарат для глобальной съёмки и спектрометрирования поверхности Марса, а также для составления карты рельефа планеты с целью выбора мест посадки будущих пилотируемых и автоматических экспедиций. Прибыв к Марсу 11 сентября 1997 года, станция начала аэродинамическое торможение 17 сентября (было выдано несколько тормозных импульсов, высота орбиты уменьшилась, и аппарат "окунулся" в верхние слои атмосферы, где скорость его ещё немного упала; до 4 февраля 1999 года аппарат таким образом "чиркал" по атмосфере на каждом витке, уменьшая скорость и высоту до расчётных). С 8 марта 1999 года и до сих пор MGS успешно ведёт измерения с низкой орбиты спутника Марса и подробную съёмку его поверхности (ориентировочное время окончания работы – май 2004 г.)

Подводя предварительные итоги, отметим, что приборы MGS позволили:

- обнаружить следы недавнего пребывания воды на поверхности Марса, включая места просачивания её из грунта и высохшие озёра;

- оценить количество воды, запасённой в полярных шапках планеты (примерно в 1,5 раза больше объёма ледников Гренландии);

- найти в Южном полушарии районы сильно намагниченной коры, что говорит о быстром охлаждении планеты в начальный период её существования;

- построить наиболее точную топографическую карту Марса, получить надёжные модели структуры коры Марса, обнаружить древние ударные бассейны и, возможно, погребённые под северными равнинами каналы;

- отслеживать динамику атмосферы и перемещение циклонов, суточное и сезонное поведение СО2 и ледяных облаков;

- установить большую роль пыли в изменениях, происходящих на поверхности планеты.

Однако споры относительно природы Великой Северной равнины и существования на ней в прошлом океана продолжаются.

Рисунок 8. Японские учёные у аппарата " Nozomi".
3 июля 1998 года (4 июля по японскому времени) со стартового комплекса Космического центра Кагосима (Утиноура-тё) стартовал (РН М-5) первый японский аппарат для исследования Марса – "Nozomi" ("Надежда"). Масса КА составляет 541 кг, корпус имеет форму восьмигранной призмы диаметром 2 м и высотой 58 см. Ориентировочный срок прибытия к Марсу – декабрь 2003 года. Правда, первоначально планировалось, что аппарат прибудет к планете 11 октября 1999 года, но ошибка в расчётах (набранная геоцентрическая скорость оказалась недостаточной, а направление её вектора – неточным) заставила пересмотреть первоначальные планы. Впрочем, японцы заявили, что четырёхлетняя отсрочка не приведёт к сокращению научной программы, и что все приборы работают нормально.

Комплект научной аппаратуры, стоящий на "Nozomi", дополняет те приборы, которые сейчас работают на орбите спутника Марса на КА MGS. Однако MGS изучает главным образом поверхность планеты и нижние слои атмосферы, а японский аппарат будет изучать верхние слои атмосферы и ионосферу, измеряя, каков уходящий поток атомарного кислорода, водорода и дейтерия. Станция также изучит структуру, состав и динамику ионосферы, возникающей в результате бомбардировки "солнечным ветром", а также магнитное поле Марса.

И, наконец, наиболее успешный на сегодняшний день завершённый американский проект – MarsPathfinder (MPF). Это был экспериментальный аппарат для отработки техники мягкой посадки на Марс и проведения научных исследований при помощи марсохода. Стартовав 4 декабря 1996 года (масса станции 895 кг), аппарат прибыл к Марсу и успешно выполнил мягкую посадку 4 июля 1997 года в 17 ч 07 мин по Гринвичу в районе 19° с.ш. и 34° з.д. И главное – на поверхность планеты впервые в истории был доставлен марсоход-ровер "Sojourner", который проработал до конца августа (вернее, на советских АМС "Марс-3" и "Марс-6" также были марсоходы, но ни один из них не смог выполнить программу работ на поверхности).

Своё имя ровер получил в честь аболиционистки времён Гражданской войны в США Соджорнер Трус. Сам ровер напоминает детскую игрушку: он имеет 65 см в длину, 48 см в ширину и 30 см в высоту в рабочем положении. Для движения марсоход использует шесть колёс из алюминия с ободом из нержавеющей стали, каждое диаметром 13 см. Его штатная скорость – 1 см/с; побольше, чем у улитки, но поменьше, чем у черепахи. Используя солнечную батарею площадью 0,2 м2 , за день ровер может иметь до 0,1 КВт·час энергии. Есть запасные литий-хлорные аккумуляторы.

Начав работу 6 июля, ровер взял пробы грунта и исследовал химический состав нескольких близлежащих камней. Кроме того, с помощью цветной стереокамеры спускаемого аппарата на Землю было передано несколько тысяч снимков панорамы места посадки.

3 августа закончился расчётный месячный срок работы станции на поверхности Марса. За это время посадочным аппаратом станции MPF на землю было передано 1,2 Гбит данных, в том числе 9669 снимков деталей марсианского ландшафта. За 30 дней ровер прошёл 52 метра по поверхности Марса, выполнил 9 анализов грунта и 3 – камней и передал 384 снимка.

После этого начались сбои со связью. Последний успешный приём данных от посадочного аппарата был 27 сентября в 10.23 по Гринвичу. Все попытки наладить связь были безуспешны (очевидно, произошла разрядка бортовых аккумуляторов, не имевших возможности подзарядки от солнечных батарей).

Основные итоги экспедиции:

- всего передано на Землю 2,6 Гбит информации, более 16 тысяч фотографий с посадочного аппарата и 550 изображений с ровера. Выполнено 15 химических анализов скальных пород. Проведены многочисленные метеоисследования;

- химический состав марсианской почвы в районе посадки (долина Ареса) подобен её составу в местах посадки КА "Viking-1 и -2";

- подтвердилось, что именно марсианская пыль, рассеянная в атмосфере, является главным поглотителем солнечной радиации;

- точно измерены температура, давление и скорость ветра во время пылевых бурь;

- химический анализ камней, проведённый ровером, показал наличие пород, богатых серой и кремнием, что говорит о вулканической активности планеты около 4,5 млрд. лет назад;

- сходство по округлости между земной галькой и камнями на поверхности Марса наводит на мысль, что они сформировались под действием потоков воды, некогда существовавшей на планете;

- марсианская пыль содержит неоднородные магнитные микрочастицы средним размером до 0,001 мм.

Кроме научной, целью экспедиции MPF была демонстрация возможности обеспечения относительно дешёвых способов доставки научного оборудования и ровера-марсохода на поверхность красной планеты. Дело в том, что при посадке на Марс использовался прямой вход в атмосферу планеты. Снижение в атмосфере происходило с помощью парашюта диаметром 11 м. Посадка осуществлялась с использованием воздушных баллонов, смягчивших удар при встрече с поверхностью.

Стоимость проекта MPF оценивается в 196 млн.$.

Наконец, надо сказать и об американской экспедиции, проходящей в настоящее время – 2001 MarsOdyssey (МО-2001).

7 апреля 2001 года с космодрома на мысе Канаверал был выполнен пуск РН Delta 2 с американской АМС 2001 MarsOdyssey ("Одиссея к Марсу – 2001"). Задачи миссии МО-2001 таковы:

- глобальное картирование элементного состава поверхности Марса;

- определение количества водорода (лёд, вода) в тонком поверхностном слое;

- исследование минералогии поверхности с высоким пространственным и спектральным разрешением;

- изучение морфологии поверхности Марса и геологических процессов, которые её сформировали;

- получение данных для планирования мест посадки следующих АМС;

- описание радиационной обстановки вблизи Марса для оценки риска пилотируемой экспедиции.

Стартовая масса КА 2001 MarsOdyssey – 725 кг. Аппарат похож по конструкции на запущенную двумя годами ранее станцию МСО, но почти на 100 кг тяжелее. Общая стоимость полёта оценивается в 300 млн. $.

На борту МО-2001 установлены три научных прибора: комплекс GRS, камера THEMIS и аппаратура радиационного контроля MARIE.

Комплекс GRS включает в себя гамма-спектрометр GRS, детектор нейтронов высоких энергий HEND (российского производства) и нейтронный спектрометр NS. Его основная цель – построение глобальной карты распространённости 20 основных породообразующих элементов в приповерхностном слое Марса с точностью до 10% и пространственным разрешением порядка 300 км. Прибор THEMIS предназначен для спектральной съёмки поверхности Марса в видимой и инфракрасной части спектра. Аппаратура MARIE (MarsRadiationEnvironmentExperiment) предназначена для изучения радиационной обстановки на трассе перелёта и на орбите спутника Марса с последующим анализом возможных доз облучения и его последствий для человека.

Параллельно с выполнением своей научной программы станция МО-2001 будет ретранслировать данные с американских марсоходов MER-A и MER-B (предполагаемая посадка 4 января и 25 февраля 2004 года соответственно, но об этом проекте – далее) и посадочных аппаратов других стран. Срок работы станции определён до 17 сентября 2005 года, но эти данные меняются от публикации к публикации. Так, во многих источниках работа КА в качестве ретранслятора продлевается дополнительно на один марсианский год – до 19 сентября 2007 г.

В период с 26 октября 2001 г. по 11 января 2002 г. МО-2001 успешно выполнил аэродинамическое торможение и вышел на рабочую орбиту. Весь процесс занял 77 суток, в то время как MGS, например, тормозился более 16 месяцев. Научная программа стартовала в конце февраля 2002 года.


3. ПЕРСПЕКТИВЫ БУДУЩЕГО

а) РОССИЙСКИЙ ПРОЕКТ “ФОБОС-ГРУНТ”

Со времён "Марса-96" о российских проектах исследования планет с использованием АМС фактически ничего не было слышно. Причина ясна – почти полное отсутствие финансовой поддержки отрасли со стороны государства. Тем не менее, российские учёные продолжали работать в этом направлении.

В 1997 году секция Совета РАН по космосу "Планеты и малые тела Солнечной системы" выделила три важнейших направления для космических исследований: изучение Луны, малых тел Солнечной системы и Марса. В соответствии с каждым направлением были открыты НИР по трём перспективным проектам:

- "Луна-Глоб" – исследование внутреннего строения Луны с использованием пенетраторов;

- "Фобос-Грунт";

- "Марс-Астер" – создание марсохода.

В мае 1998 г. из трёх проектов было предложено выбрать один для продолжения проработки на уровне ОКР и включения его в Федеральную космическую программу на период 2000 – 2005 гг. На заседании секции 2 июня 1998 года был выбран проект "Фобос – Грунт" ("Ф – Г").

В самых общих чертах, этот проект предусматривает создание межпланетного аппарата, способного совершить перелёт к Марсу, посадку на его естественный спутник Фобос, взятие образца грунта и доставку его на Землю. Преимущество такого проекта перед остальными предложенными для обсуждения состоит в следующем:

- в лабораторных условиях на Земле образцы внеземного вещества могут быть изучены гораздо лучше, чем это возможно на поверхности планеты или при дистанционных исследованиях; пока такой возможности у учёных не было (кроме изучения лунного грунта);

- с технической точки зрения, полёт к естественным спутникам Марса проще, чем к другим малым телам Солнечной системы. С них целесообразно начинать новую линию космических исследований – экспедиций к малым телам с целью доставки на Землю образцов их веществ;

- ранее в проекте "Фобос" (1988 – 1989) были решены многие технические вопросы полёта к спутникам Марса и получены новые научные данные о Фобосе. Таким образом, будет обеспечена преемственность решений;

- в последнее время вокруг исследований Марса сложилась широкая международная кооперация, включающая космические агентства и научные организации многих стран. Проект "Ф – Г" может стать важным самостоятельным российским элементом этой кооперации.

Основные задачи проекта "Ф – Г" сводятся к следующим:

- определить происхождение спутников Марса – Фобоса и Деймоса и их отношение к Марсу;

- решить, является ли Фобос захваченным астероидом или телом, имеющим "генетическую" связь с Марсом; полученные результаты могут быть использованы при исследовании спутниковых систем других планет;

- выяснить, каковы физические и химические характеристики спутников Марса, их внутреннее строение, особенности орбитального и собственного вращения;

- доставить образец реликтового (первичного) вещества на Землю.

С учётом сложности экспедиции и чтобы "не терять время", предполагается проведение научных экспериментов по исследованию Фобоса, Марса и межпланетного пространства на всех участках перелёта. Сюда должны войти:

- исследование атмосферы и поверхности Марса;

- исследование околопланетной среды в окрестностях Марса и Фобоса (пылевая и газовая составляющие);

- исследование взаимодействия солнечного ветра с телами Солнечной системы;

- технические исследования (поведение новых систем в длительном полёте).

Кроме того, после посадки на поверхности спутника останется долгоживущая станция с комплектом научной аппаратуры для проведения ряда исследований.

В состав бортовой научной аппаратуры АМС "Ф – Г" войдут панорамная ТВ-камера, гамма-спектрометр, нейтронный детектор, сейсмометр, температурный анализатор, фотометр пылевой среды, анализатор космической пыли, генератор доплеровских измерений и ряд других. Стартовая масса всего аппарата составит около 7250 кг, масса на момент выхода на гелиоцентрическую орбиту – 2370 кг. В качестве носителя предполагается использовать РН типа "Союз" или "Днепр".

Старт аппарата к Марсу планируется в декабре 2004 – июне 2005 года. Носитель выводит КА на опорную круговую орбиту ИСЗ, после чего аппарат разгоняется с использованием бортового ЖРД. Переход на начальную гелиоцентрическую орбиту осуществляется с помощью трёхимпульсного манёвра. После выработки топлива блок баков отделяется. Затем раскрываются панели солнечных батарей и включается электроракетная двигательная установка (ЭРДУ). Аппарат начнёт медленный доразгон на гелиоцентрическом участке траектории, чтобы достичь Марса, уравнять скорость со скоростью орбитального движения планеты и выйти в плоскость марсианского экватора. По первоначальным расчётам длительность перелёта к Марсу составляла порядка 800 суток (в этом случае перелётная траектория включает два активных участка). Однако оптимизация траектории не завершена, и в настоящее время считается, что перелёт может быть сокращён за счёт иной баллистической схемы до 450 – 500 суток.

Рисунок 15. Схема перелёта АМС "Фобос – Грунт".
Незадолго перед встречей с Марсом модуль ЭРДУ, выполнив свою задачу доразгона, отделяется. В перицентре пролётной траектории бортовой ЖРД выдаёт тормозной импульс, и аппарат выходит на эллиптическую орбиту искусственного спутника Марса (ИСМ). Далее с этой орбиты аппарат переходит на так называемую круговую орбиту наблюдения, плоскость которой лежит в плоскости марсианского экватора, на 300 км выше орбиты Фобоса. В течение трёх недель с этой орбиты будут выполнены навигационные наблюдения Фобоса (уточнение параметров его орбиты и орбиты самого аппарата). Какая-то часть времени будет отдана научным наблюдениям Фобоса и Марса.

Наконец, начнётся последовательное сближение с Фобосом, методика которого, в принципе, уже рассчитана и частично отработана при подлёте советской АМС "Фобос-2" к Фобосу в январе – марте 1989 г.

Сближение с Фобосом включает два основных этапа:

- орбитальное сближение;

- непосредственное сближение.

На первом этапе КА выходит на квазисинхронную орбиту. Находясь на ней, аппарат в относительном движении обращается вокруг Фобоса с периодом, равным периоду обращения этого спутника вокруг Марса (Фобос всегда повёрнут к планете одной стороной).

Сближение и посадка на Фобос из-за малой силы гравитации на спутнике (менее 0,001 земной) представляет, по сути дела, операцию встречи и стыковки. В течение 1,5 – 2 часов аппарат в автономном режиме осуществит непосредственное сближение с Фобосом с использованием ДУ малой тяги. После выдачи последнего импульса скорость сближения КА со спутником составит около полуметра в секунду. В непосредственной близости от поверхности начнётся этап причаливания. С борта в сторону поверхности "выстреливаются" и заглубляются в грунте несколько "гарпунов", связанных с платформой аппарата гибкими тросиками. Далее КА с выключенными ДУ садится на поверхность. В момент касания срабатывают прижимные двигатели, а бортовые "лебёдки" выбирают глубину натяжения тросиков. Аппарат оказывается надёжно зафиксированным на поверхности.

Через некоторое время после посадки на аппарате приводится в действие грунтозаборное устройство. Взятые образцы грунта (реголита) массой около 170 г из устройства перегружаются в спускаемый аппарат (СА), входящий в состав взлётной ракеты (ВР). СА герметично закрывается, и грунтозаборное устройство отводится в сторону, чтобы не мешать старту ракеты с платформы.

Через 1 – 3 суток после посадки ВР должна стартовать с Фобоса на траекторию перелёта к Земле. После ухода от поверхности Фобоса на безопасное расстояние ВР разворачивается с помощью двигателей стабилизации на заданный угол; затем маршевый двигатель отрабатывает импульс для ухода возвращаемого аппарата на траекторию перелёта к Земле.

После старта на Фобосе останется орбитально-перелётный модуль (ОПМ) с научной аппаратурой, или так называемая долгоживущая станция. Сбор и передачу на Землю научных данных станция должна будет вести не


28-04-2015, 23:37


Страницы: 1 2 3 4
Разделы сайта