В насыщенных следах концентрация электронов настолько велика, что радиоволна, не проникая внутрь следа, отражается от него. Такие следы существуют десятки секунд, в отдельных случаях даже десятки минут. Иногда насыщенные следы хорошо наблюдаются визуально.
Физические процессы, протекающие в метеорных следах, сложны и разнообразны. Свободные электроны, обладающие большой подвижностью, довольно быстро теряют свою свободу, сталкиваясь с положительно заряженными ионами или «прилипая» к нейтральным молекулам воздуха. Тем не менее, метеороиды различных размеров настолько часто посещают верхние слои атмосферы, что на некоторых высотах электроны метеорного происхождения практически неисчерпаемы.
Известно, что в слое Е ионосферы, на высотах 100 – 120 км, днем свободных электронов примерно в 10 раз больше, чем ночью. Ничего необычного в этом нет, ведь солнечное излучение действует как мощный ионизирующий агент. Однако было замечено, что в течение ночи иногда наблюдаются внезапные возрастания электронной концентрации. Мало того, имеются неоднократные примеры совпадения времени появления метеоров, наблюдаемых визуально, с пиками ионизации в ионосферном слое Е. Во время действия метеорного дождя Драконид в 1946 г. было отмечено появление очень стойкого ионизационного слоя, державшегося несколько часов.
Таким образом, мелкие и крупные метеороиды, непрерывно «засоряя» земную атмосферу всякого рода примесями, влияют на ее пылевой и ионный состав. Любопытно, что это обстоятельство удалось использовать в практических целях. Еще в 40-х годах было замечено, что иногда в момент появления яркого метеора устанавливалась кратковременная радиосвязь между передатчиком и приемником, отстоящими друг от друга на тысячи километров. Возникла идея использовать случайные метеорные вспышки в качестве каналов радиосвязи на сверхвысоких частотах. Правда, практическое воплощение иногда очень простой и оригинальной идеи оказывается связанным с большим количеством технических сложностей.
Тем не менее, сейчас существует достаточно много станций радиосвязи, «эксплуатирующих» метеоры. Учитывая специфику работы метеорного канала (в среднем несколько десятков долей секунды каждую минуту), передача и прием информации идет в ускоренном темпе. Передаваемая информация, зашифрованная в двоичном коде, содержится в специальном накопителе. Как только «открывается» метеорный канал связи, в эфир поступает порция сообщений, передающихся со скоростью до 10000 двоичных знаков в секунду. Принятая информация также поступает в накопитель, а затем дешифруется. Такая система в большинстве случаев надежна и устойчива. Так, например, метеорная линия связи, работающая на волен 8 м, способна обеспечить непрерывную четкую работу нескольких телетайпов.
Глава 2. Методы наблюдения метеоров
Визуальные наблюдения метеоров невооруженным глазом, являющиеся самым древним и самым дешевым методом наблюдений, оставили глубокий след в истории метеорной астрономии. Их доступность и простота сыграли значительную роль в накоплении обширных наблюдательных данных. На основе этих данных были открыты метеорные потоки, определены орбиты многих метеороидов, обнаружена связь метеорных роев с кометами. В настоящее время визуальный метод сохраняет некоторое научное значение, но в силу повсеместного развития более точных инструментальных методов в основном применяется лишь астрономами-любителями.
Наблюдения слабых метеоров, недоступных невооруженному глазу, астрономы проводили с помощью бинокуляров и небольших телескопов еще в конце XIX века. Правда, из-за малого поля зрения этих инструментов вероятность обнаружения даже очень слабого метеора (а их всегда во много раз больше, чем ярких) невелика, что делает телескопические наблюдения очень утомительными. Но благодаря многолетним усилиям наблюдателей – энтузиастов все-таки удалось получить определенные сведения о численности слабых метеоров и их радиантах.
На смену визуальным методам пришли фотографические. Опыты применения фотографии в астрономии были начаты еще в середине XIX века. Из-за недостаточной чувствительности фотоэмульсий первыми сфотографированными объектами были Солнце, Луна, планеты и несколько наиболее ярких звезд. Но уже в 1882 г. английскому астроному Д. Гиллу удалось получить несколько фотопластинок, буквально усеянных изображениями звезд. Вдохновленные удачей Д. Гилла, братья Поль и Проспер Анри в Париже в том же году с успехом использовали фотографический метод для составления звездных карт, положив начало звездной фотографии.
Через три года Л. Вейник в Праге сфотографировал первый метеор. Надо сказать, что способ фотографирования метеоров отличается от фотографирования других астрономических объектов. Когда вы исследуете галактику, звезду, комету или астероид, вы наводите на этот объект телескоп и фотографируете его столько времени, сколько вам это необходимо. При желании вы можете многократно повторять эту процедуру. Фотографировать таким образом метеоры не удается, поскольку неизвестно, в какой момент и в какой области небесной сферы может на мгновение появиться относительно яркий метеор (правда, случайные фотографии метеоров получались в различных обсерваториях мира, но научного значения они не имели). Необходимо направить в небо камеру с достаточно широким полем зрения, открыв затвор на все время наблюдений.
Даже приблизительное понимание природы небесных объектов невозможно без умения определять расстояния до них. Лишь знание расстояний до тел, порождающих метеоры, позволяет посчитать, сколько они излучают энергии и каковы их массы. Поэтому еще в 1893 г. сотрудник Йельской обсерватории в США У. Элкин установил несколько камер в двух пунктах, разделенных расстоянием 3 – 5 км, с целью определить методом триангуляции расстояния до тел, порождающих метеоры, и их высоты над поверхностью Земли. На одном из пунктов фотографирование проводилось через вращающийся «пропеллер»-обтюратор, сделанный из велосипедного колеса. При вращении обтюратор перекрывал объективы камер с угловой скоростью от 6 до 10 об/с, и на фотоснимке изображение получалось в виде прерывистой линии, что позволяло определить скорость метеороида.
Эта работа продолжалась до 1909 г., однако результаты ее были частично опубликованы лишь в 1937 г. В 1912 г. аналогичные работы были начаты в Великобритании Ф. Линдеманом и М. Добсоном, но продолжались недолго, не дав существенных результатов. У нас в стране первые фотографические наблюдения с двух пунктов начались в 1932 г. в Москве под руководством В.В. Федынского. Они проводились на двух камерах, расположенных на расстоянии 2 км друг от друга. Перед объективом одной из них был установлен обтюратор.
Все эти пионерские работы продемонстрировали жизнеспособность фотографических методов наблюдения. В 1936 г. в Гарвардской обсерватории Ф. Уипл начал систематические наблюдения метеоров на двух камерах с полем зрения 60´60°, удаленных друг от друга на 38 км. Несмотря на то, что количество сфотографированных метеоров было еще невелико, точность метода благодаря увеличению базиса достигла высокой степени. Уиплу и его сотрудникам удалось определить высоты, скорости и орбиты метеороидов, сделать первые оценки их масс и получить значения плотности атмосферы на высотах 80 – 100 км.
Следующим шагом в развитии фотографического метода явилось создание ряда комплексов из нескольких камер, названных метеорными патрулями. В 1938 г. первый метеорный патруль, состоящий из четырех агрегатов по семь камер каждый, был создан в Советском Союзе. В его разработке активно участвовали С.В. Орлов, В.В. Федынский и И.С. Астапович. Патруль, изготовленный в Москве в Государственном астрономическом институте им. П.К. Штернберга, был установлен на астрономической обсерватории в Душанбе, которая славится рекордным количеством ясных ночей.
Во время второй мировой войны астрономические наблюдения, в том числе и метеорные, во многих странах были прерваны и возобновились лишь в конце 40-х годов. К этому времени американец Д. Бейкер сконструировал метеорную камеру супер-Шмидт, обладающую многими ценными качествами. При поле зрения 55° камера была чрезвычайно светосильна, что позволяло в изобилии фотографировать слабые метеоры до звездной величины 3m . Поскольку камеры имели целевое назначение и были очень дороги, их изготовили всего 6 экземпляров, 4 из которых установили в США, 2 – в Канаде. Несколько позже в Великобритании была создана похожая камера и установлена на известной обсерватории Джодрелл-Бэнк. В СССР, Чехословакии и некоторых других странах с помощью метеорных патрулей активно велись наблюдения более ярких метеоров (ярче 1m ).
Любую камеру метеорного патруля можно превратить в спектрограф, если поместить перед ее объективом стеклянную призму или дифракционную решетку. Но метеорная спектрография при значительном сходстве со звездной имеет ряд особенностей, затрудняющих получение хороших спектрограмм. При фотографировании спектров звезд телескоп, оснащенный призмой или решеткой, наводится на звезду и в дальнейшем «следит» за ней с помощью часового механизма. Таким образом, звезда может экспонироваться довольно долгое время.
Метеор существует в течение долей секунды, и никакими ухищрениями вы не заставите его появиться вновь. Кроме того, хороший спектр получится только в том случае, если направление движения метеора составит значительный угол (прямой в идеальном случае) с направлением дисперсии решетки. В противном случае спектр не получится, поскольку все линии сольются в одну прямую полосу.
К настоящему времени получено несколько тысяч спектрограмм; в подавляющем большинстве качество их недостаточно высокое, поскольку они имеют небольшое разрешение (многие линии сливаются друг с другом). Разумеется, бывают и замечательные исключения. Так, один из спектров, полученный чешским астрономом З. Цеплехой, содержит более 1000 линий.
Уже отмечалось, что быстрое движение метеоров затрудняет применение классических наблюдений, хорошо разработанных в астрофизике. Долго, например, не удавалось получить истинный фотопортрет метеора; мешало его быстрое движение.
Наконец, в 1964 г. академик АН ТаджССР П.Б. Бабаджанов и одесский астроном профессор Е.Н. Крамер разработали метод, названный впоследствии методом мгновенной экспозиции. В его основе лежит идея уменьшения времени фотографирования метеоров с помощью специально сконструированного вращающегося затвора. Затвор, непрерывно вращаемый электродвигателем, обеспечивает периодическое фотографирование объекта с частотой 50 экспозиций в секунду. Длительность каждой экспозиции составляет 0,00056 секунды. В среднем за одну ночь число таких экспозиций достигает миллиона. Когда в поле зрения камеры оказывается метеор, то получается от нескольких единиц до нескольких десятков его мгновенных портретов.
Воплотил идею в жизнь талантливый душанбинский механик И.Ф. Малышев, разработавший уникальную конструкцию и своими руками изготовивший весь механизм до последнего винтика. За обманчивой простотой его конструкторских и технических решений стоял не только точный расчет и профессиональная сноровка, но и неуловимое потустороннему глазу вдохновение мастера, чувствующего тонкую гармонию деталей и узлов, слившихся в единую безупречную систему.
После пуска 16 камер в Душанбе Малышев по просьбе профессора Крамера осуществил аналогичную конструкцию и в Одесской астрономической обсерватории.
Первые систематические наблюдения метеоров этим методом были начаты в Институте астрофизики Академии наук Таджикской ССР. Для этой цели использовались 16 неподвижных камер, оснащенных новыми затворами. Начало было удручающим; сотни широкоформатных негативов буквально «обшаривались» вдоль и поперек, и всякий раз финиш поисков разочаровывал: на снимках ничего, кроме густого «леса» из суточных следов звезд, не было. На память не раз приходили дискуссии по поводу эффективности нового метода. Тогда некоторые специалисты полагали, что применение очень коротких экспозиций неприменимо при фотографировании метеоров. Тем не менее, наблюдения проводились регулярно во все ясные безлунные ночи, и материал тщательно просматривался.
И вот, наконец, на шестой сотне снимков муки ожидания кончились. Метеоры стали появляться. Сначала это были лишь слабые невыразительные штрихи, но потом, по мере того, как удавалось сфотографировать более яркие метеоры, картина изменилась. Впервые в мире были получены истинные фотопортреты метеоров, которые отличались большим разнообразием.
В дальнейшем перед объективами восьми камер были помещены дифракционные решетки и получен первый мгновенный спектр метеора…
Еще в конце 20-х – начале 30-х годов в СССР, США и Японии было обнаружено, что на распространение радиоволн влияют эпизодически возникающие очаги ионизации, порождаемые пролетами метеороидов. Действительно, при полете метеороида в атмосфере Земли испарившиеся атомы метеорного вещества, сталкиваясь с молекулами воздуха, теряют электроны. На всем протяжении атмосферной траектории метеора создается ионизационный след, содержащий большое количество свободных электронов. При достаточной концентрации электронов радиоволна, посланная с Земли радиолокатором, отразится от следа, как от миниатюрной ионосферы или твердого тела.
Во время второй мировой войны мощные радиолокаторы в Великобритании использовались для дальнего обнаружения фашистских самолетов и ракет «Фау-2». На первых порах персонал, обслуживавший систему, неоднократно попадал впросак. Локаторы регистрировали отражения от движущейся цели, поднималась тревога, приводились в боевую готовность орудия, с аэродромов взлетали истребители, но ни ракет, ни вражеских самолетов в небе не оказывалось. Причина таких отражений продолжала оставаться загадочной, пока однажды момент отражения сигнала не совпал с появлением болида. Ситуация прояснилась, и работники радиолокационной службы разработали методику распознавания ложных сигналов.
После окончания войны определенный период времени средства противовоздушной обороны продолжали работать и «между делом» регистрировать отражения от метеорных следов. Было установлено, что подавляющее количество радиоотражений возникает при абсолютно чистом небе, когда отсутствуют метеоры, которые можно сфотографировать или увидеть визуально. Это могло означать, что радиолокаторы способны регистрировать значительно более слабые метеоры, порождаемые мелкими метеорными частицами. При этом число радиометеоров намного превышало число оптически наблюдаемых метеоров.
Характерно, что ионизационный след, образованный метеором, разрушается не мгновенно, и электроны в свободном состоянии в достаточно большой концентрации могут существовать от нескольких секунд до десятков и сотен секунд, т.е. радиоотражения от метеорного следа продолжаются и после того, как метеорное тело полностью испарилось. Этим немедленно воспользовались исследователи верхней атмосферы. Дело в том, что метеорные следы не остаются неподвижными, а дрейфуют под воздействием верхнеатмосферных ветров и поэтому являются прекрасными источниками информации о скорости и направлениях воздушных течений на высотах 60 – 120 км. Этот геофизический аспект радиолокационных наблюдений метеорных следов чрезвычайно сильно стимулировал развитие целой сети метеорных радиолокационных станций на Земле. Как правило, с помощью одной и той же станции параллельно решаются и задачи метеорной астрономии, и геофизические задачи.
Наблюдения метеоров с помощью радиолокаторов проводятся теперь все шире и шире. Передатчик мощностью до нескольких тысяч киловатт посылает направленные волны, вращая свой луч. Радиоволна, попадая на след метеора, отражается обратно и отмечается время прохождения сигнала, дающее расстояние до метеора. Расстояние от летящего метеора до наблюдателя меняется; меняется также время прохождения сигнала от разных точек пути метеора.
На рис.3 схематически показаны пути метеоров (I,III) и соответствующая картина на экране радиолокатора (IV). Форма кривой позволяет определить быстроту полета. Легко понять, что чем быстрее полет, тем быстрее меняется расстояние до метеора и тем круче кривая на экране II, направленная вершиной книзу. На рисунке приведены кривые, соответствующие двум различным скоростям движения. Нижняя точка кривой отмечает время Т0 , когда метеор проходит на кратчайшем расстоянии от наблюдателя. В виде кривой получается запись с экрана полета головной части метеора, а запись остающегося и расплывающегося следа его – в широкой полосы (IV). Примеры таких записей даны на схеме IVвнизу, правее записи от трех метеоров, из которых только метеор б миновал наблюдателя и удалился. Метеоры а и в оставили за собой следы, постепенно таявшие. Фактический вид экрана радиолокатора показан на нижних фотографиях.
Хотя радиолокационный метод наблюдений метеоров позволил получить много сведений о мелких метеорных телах, в особенности об их количестве, его нельзя считать идеальным средством исследования. Во-первых, он уступает фотографическому методу по точности определения различных характеристик метеороидов, во-вторых, не позволяет получать данные о химическом составе мелких метеорных частиц (а это очень важно), в-третьих, все-таки не дает наглядной картины самого метеорного явления, что ограничивает возможности детального исследования индивидуальных метеороидов.
Исследование метеорных тел стало теперь доступно также при помощи искусственных спутников Земли и межпланетных автоматических станций.
Мы можем на ракетах регистрировать удары метеоритов. С разными, но большими скоростями эти, чаще всего мелкие, частицы вещества бороздят Солнечную систему. Мы можем теперь определять частоту встреч с ними ракеты, их размеры, массы и их пробивную способность.
В межпланетном безвоздушном пространстве даже довольно мелкие частицы могут пробить космический корабль. Тогда они лишат его герметичности, повредят аппаратуру, могут погубить экипаж. В результате исследований на советских искусственных спутниках и космических аппаратах впервые было установлено, что эта метеорная опасность не так велика, как опасались. Спутники и станции подавали свои радиосигналы на Землю без помех в течение очень долгого времени, т.е. не были повреждены ударами метеоритов.
Для изучения межпланетных метеорных частиц применяли разные методы. Одни аппараты накапливали энергию ударов метеорных тел. Посредством запоминающих устройств и телеметрии они сообщали на Землю суммарную мощность этих ударов. Другие приборы регистрировали отдельно каждый удар или их частоту и т.д.
Иногда автоматические станции встречали потоки метеорных тел, циркулирующих вокруг Солнца по определенной орбите. Число их в единице объема менялось со временем. За тысячу секунд на 1 м2 отмечалось два удара частиц со средней массой 5×10-9 г, а частиц более крупных было раз в пять меньше. Однажды частота ударов возросла в 10000 раз.
Эти мелкие и многочисленные удары регистрировались чувствительными приборами, но они не вредили межпланетной лаборатории. С более же крупными метеорными телами межпланетные станции, видимо, не сталкивались и опасность с их стороны не так уж велика. Впрочем, возможно, что сигналы межпланетной станции, запущенной в СССР в 1962 г. к Венере, прекратились досрочно вследствие столкновения ее с метеоритом.
Список использованной литературы
1. Воронцов-Вельяминов В.П. Очерки о вселенной. – М.: Наука, 1980. – 672с.
2. Гетман В.С. Внуки Солнца. – М.: Наука, 1989. – 176 с.
3. Кузнецова Л.И.
28-04-2015, 23:38