Освоєння космосу: історія та сучасність

багатозональної відеоінформації та її використання при вирішенні завдань наук про Землю та господарські галузі. До таких завдань належить вивчення глобальних і локальних структур земної кори для пізнання історії її розвитку.

Друга проблема є однією з основних фізико-технічних проблем дистанційного зондування і має своєю метою створення каталогів радіаційних характеристик земних об'єктів і моделей їх трансформації, які дозволять виконати аналіз стану природних утворень на час зйомки і прогнозувати їх на динаміку.

Відмінною особливістю третьої проблеми є орієнтація на випромінювання радіаційних характеристик великих регіонів аж до планети в цілому з залученням даних про параметри і аномалії гравітаційного і геомагнітного полів Землі.

Людина вперше оцінила роль супутників для контролю за станом сільськогосподарських угідь, лісів та інших природних ресурсів Землі лише через кілька років після настання космічної ери. Початок був покладений у 1960 році, коли за допомогою метеорологічних супутників "Тірос" були отримані обриси земної кулі, що лежить під хмарами. Ці перші чорно-білі зображення давали досить слабке уявлення про діяльність людини і тим не менше це було першим кроком. Незабаром були розроблені нові технічні засоби, що дозволили підвищити якість спостережень. Інформація добували з багатоспектральних зображень у видимому та інфрачервоному областях спектру. Першими супутниками, призначеними для максимального використання цих можливостей були апарати типу "Лендсат". Наприклад, супутник "Лендсат-D", четвертий із серії, здійснював спостереження Землі з висоти понад 640 км за допомогою вдосконалених чутливих приладів, що дозволило отримувати значно більш детальну та своєчасну інформацію. Однією з перших областей застосування зображень земної поверхні, була картографія. У епоху, коли ще не було супутників, карти багатьох областей, навіть у розвинених районах світу були складені неточно. Зображення, отримані за допомогою супутника "Лендсат", дозволили скорегувати й оновити деякі існуючі карти США. У СРСР зображення, отримані зі станції "Салют", виявилися незамінними для перевірки БАМ.

У середині 70-х років НАСА та Міністерство сільського господарства США ухвалили рішення продемонструвати можливості супутникової системи в прогнозуванні найважливішої сільськогосподарської культури - пшениці. Супутникові спостереження, що виявилися на рідкість точними, в подальшому були поширені на інші сільськогосподарські культури. В той же час в СРСР спостереження за сільськогосподарськими культурами проводилися з супутників серій "Космос", "Метеор", "Мусон" і орбітальних станцій "Салют".

Використання інформації з супутників виявило її незаперечні переваги при оцінці обсягу стройового лісу на великих територіях будь-якої країни. Стало можливим керувати процесом вирубки лісу і при необхідності давати рекомендації щодо зміни контурів району вирубки з точки зору найкращою збереження лісу. Завдяки зображенням з супутників стало також можливим швидко оцінювати межі лісових пожеж, особливо "коронообразних", характерних для західних областей Північної Америки, районів Примор'я і південних районів Східного Сибіру в Росії.

Величезне значення для людства в цілому має можливість практично безперервного спостереження за просторами Світового Океану, цієї "кузні" погоди. Саме над товщами океанської води зароджуються жахливої сили урагани і тайфуни, що несуть численні жертви і руйнування для жителів узбережжя. Раннє оповіщення населення часто має вирішальне значення для порятунку десятків тисяч життів. Визначення запасів риби та інших морепродуктів також має величезне практичне значення. Океанські течії часто викривляються, змінюють курс і розміри. Наприклад, Ель Ніно, тепла течія в південному напрямку біля берегів Еквадору в окремі роки може розповсюджуватися вздовж берегів Перу до 12º південної широти. Коли це відбувається, планктон і риба гинуть у величезних кількостях, завдаючи непоправної шкоди рибним промислам багатьох країн, і тому числі і Росії. Великі концентрації одноклітинних морських організмів підвищують смертність риби, можливо через те, що в них міститься велика кількість токсинів. Спостереження з супутників також допомагає виявити "капризи" течій і дати корисну інформацію тим, хто її потребує. За деякими оцінками російських і американських вчених, економія палива у поєднанні з "додатковим уловом" за рахунок використання інформації з супутників, отриманої в інфрачервоному діапазоні, дає щорічний прибуток у 2,44 млн. доларів. Використання супутників для огляду полегшило завдання прокладання курсу морських суден . Так само супутниками виявляються небезпечні для судів айсберги, льодовики. Точне знання запасів снігу в горах та обсягу льодовиків - важливе завдання наукових досліджень, адже у міру освоєння посушливих територій потреба у воді різко зростає.

Неоціненною є допомога космонавтів у створенні найбільшого картографічного твору - Атласу сніжно-льодових ресурсів світу. Також за допомогою супутників знаходять нафтові забруднення, забруднення повітря, корисні копалини.

Протягом короткого періоду часу з початку космічної ери людина не тільки послала автоматичні космічні станції до інших планет, вона ступила на поверхню Місяця, але також зробила революцію в науці про космос, рівної якій не було за всю історію людства. Поряд з великими технічними досягненнями, викликаними розвитком космонавтики, були отримані нові знання про планету Земля і сусідні світи. Одним з перших важливих відкриттів, зроблених не традиційним (візуальним), а іншим методом спостереження, було встановлення факту різкого збільшення, починаючи з деякої граничної висоти, інтенсивності ізотропних космічних променів. Це відкриття належить австрійцю В. Ф. Хесс, який запустив у 1946 році на великі висоти газову кулю-зонд з апаратурою.

У 1952 і 1953 роках Джеймс Ван Аллен проводив дослідження низки енергетичних космічних променів під час запуску в районі північного магнітного полюса Землі невеликих ракет на висоту 19-24 км і висотних куль - балонів. Проаналізувавши результати проведених експериментів, Ван Аллен запропонував розмістити на борту перших американських штучних супутників Землі досить прості по конструкції детектори космічних променів.

За допомогою супутника "Експлорер-1", виведеного США на орбіту 31 січня 1958 року було виявлено різке зменшення інтенсивності космічного випромінювання на висотах понад 950 км. Наприкінці 1958 року АМС "Піонер-3", подолала за добу польоту відстань понад 100000 км і зареєструвала за допомогою встановлених на борту датчиків другий радіаційний пояс Землі, що був розташований вище першого і який також опоясував усю земну кулю.

У серпні та вересні 1958 року на висоті більш ніж 320 км було зроблено три атомних вибухи, кожен потужністю 1,5 кілотонн. Метою випробувань (кодова назва "Аргус") було вивчення можливості зникнення радіо і радіолокаційного зв'язку при таких випробуваннях. Дослідження Сонця - найважливіше наукове завдання, вирішенню якого присвячено багато запусків перших супутників і АМС.

Американські "Піонери" (1959-1968роки) з орбіт, що були розташовані біля Сонця, передавали по радіо на Землю найважливішу інформацію про структуру Сонця. У той же час було запущено більше двадцяти супутників серії "Інтеркосмос" з метою вивчення Сонця і простору біля нього.

Чорні дірки

Про чорні дірки дізналися в 1960-х роках. Виявилося, що якби наші очі могли бачити лише рентгенівське випромінювання, то зоряне небо над нами виглядало б зовсім інакше. Правда, рентгенівські промені, що випускаються Сонцем, вдалося виявити ще до народження космонавтики, але про інші джерела в зоряному небі і не підозрювали. На них натрапили зовсім випадково.

У 1962 році американці, вирішивши перевірити, чи не виходить від поверхні Місяця рентгенівське випромінювання, запустили ракету, оснащену спеціальною апаратурою. Лише тоді, обробляючи результати спостережень переконалися, що прилади відзначили потужне джерело рентгенівського випромінювання. Він розташовувався у сузір'ї Скорпіона. І вже у 70-х роках на орбіту вийшли перші 2 супутники, призначені для досліджень та пошуку джерел рентгенівських променів у всесвіті - американський "Ухуру" і радянський "Космос-428".

До цього часу дещо вже почало прояснюватися. Об'єкти, що випускають рентгенівські промені, зуміли зв'язати з ледь видимими зірками, що мали незвичайні властивості. Це були компактні згустки плазми нікчемних (за космічними мірками) розмірів і мас, розпечені до декількох десятків мільйонів градусів. При досить скромній зовнішності ці об'єкти володіли колосальною потужністю рентгенівського випромінювання, що у кілька тисяч разів перевищує повне випромінення Сонця.

Ці крихітні, діаметром близько 10 км, останки повністю вигорілих зірок, зіщулені до жахливої щільності, повинні були хоч якось заявити про себе. Тому так охоче в рентгенівських джерелах "впізнавали" нейтронні зірки. Але розрахунки спростували очікування: тільки що утворені нейтронні зірки повинні були відразу охолонути і перестати випромінювати, а ці промінилися рентгеном.

За допомогою запущених супутників дослідники виявили строго періодичні зміни потоків випромінювання деяких з них. Був визначений і період цих варіацій - зазвичай він не перевищував декількох діб. Так могли вести себе лише два обертаються навколо себе зірки, з яких одна періодично затьмарювала іншу. Це було доведено при спостереженні в телескопи.

Звідки ж черпають рентгенівські джерела колосальну енергію випромінювання, Основною умовою перетворення нормальної зірки в нейтронну вважається повне загасання в ній ядерної реакції. Тому ядерна енергія виключається. Тоді, може, це кінетична енергія швидко обертається масивного тіла? Дійсно вона у нейтронних зірок велика. Але і її вистачає лише ненадовго.

Більшість нейтронних зірок існує не поодинці, а в парі з величезною зіркою. У їх взаємодії, вважають теоретики, і приховано джерело могутньої сили космічного рентгену. Вона утворює навколо нейтронної зірки газовий диск. У магнітних полюсів нейтронного кулі речовина диска випадає на його поверхню, а придбана при цьому газом енергія перетворюється в рентгенівське випромінювання.

Свій сюрприз підніс і "Космос-428". Його апаратура зареєструвала нове, зовсім не відоме явище - рентгенівські спалаху. За один день супутник засік 20 сплесків, кожен з яких тривав не більше 1 сек. , А потужність випромінювання зростала при цьому в десятки разів. Джерела рентгенівських спалахів вчені назвали барстери. Їх теж пов'язують з подвійними системами. Найпотужніші спалаху за вистрілює енергії всього лише в декілька разів поступається повного випромінювання сотень мільярдів зірок, які є в нашій Галактиці.

Теоретики довели: "чорні діри", що входять до складу подвійних зоряних систем, можуть сигналізувати про себе рентгенівськими променями. І причина виникнення та ж - Акреція газу. Щоправда механізм в цьому випадку дещо інший. Осідають в "дірку" внутрішні частини газового диска повинні нагрітися і тому стати джерелами рентгену.

Переходом на нейтронну зірку закінчують "життя" тільки ті світила, маса яких не перевищує 2-3 сонячних. Більш великі зірки спіткає доля "чорної діри".

Рентгенівська астрономія повідала нам про останній, можливо, самому бурхливому, етапі розвитку зірок. Завдяки їй ми довідалися про найпотужніших космічних вибухи, про газ з температурою в десятки і сотні мільйонів градусів, про можливість абсолютно незвичайного надщільного стану речовин в "чорні діри".

Що ж ще дає космос саме для нас? У телевізійних (ТВ) програмах вже давним-давно не згадується про те, що передача ведеться через супутник. Це є зайвим свідченням величезного успіху в індустріалізації космосу, що стала невід'ємною частиною нашого життя. Супутники зв'язку буквально обплутують світ невидимими нитками. Ідея створення супутників зв'язку народилася незабаром після другої світової війни, коли А. Кларк в номері журналу "Світ радіо" (Wireless World) за жовтень 1945р. представив свою концепцію ретрансляційні станції зв'язку, розташованої на висоті 35880 км над Землею.

Заслуга Кларка полягала в тому, що він визначив орбіту, на якій супутник нерухомий відносно Землі. Така орбіта називається геостаціонарній або орбітою Кларка. Під час руху по круговій орбіті заввишки 35880 км один виток відбувається за 24 години, тобто за період добового обертання Землі. Супутник, який рухається по такій орбіті, буде постійно знаходитися над певною точкою поверхні Землі.

Перший супутник зв'язку "Телстар-1" був запущений все ж таки на низьку навколоземну орбіту з параметрами 950 х 5630 км це сталося 10 липня 1962р. Майже через рік пішов запуск супутника "Телстар-2". У першій телепередачі був показаний американський прапор у Новій Англії на тлі станції в Андовері. Це зображення було передано до Великобританії, Франції і на американську станцію в шт. Нью-Джерсі через 15 годин після запуску супутника. Двома тижнями пізніше мільйони європейців і американців спостерігали за переговорами людей, що знаходяться на протилежних берегах Атлантичного океану. Вони не лише розмовляли але і бачили один одного, спілкуючись через супутник. Історики можуть вважати цей день датою народження космічного ТБ. Найбільша в світі державна система супутникового зв'язку створена в Росії. Її початок був покладений у квітні 1965р. запуском супутників серії "Блискавка", що виводяться на сильно витягнуті еліптичні орбіти з апогеєм над Північним півкулею. Кожна серія включає чотири пари супутників, що обертаються на орбіті на кутовому відстані один від одного 90 гр.

На базі супутників "Блискавка" побудована перша система далекого космічного зв'язку "Орбіта". У грудні 1975р. сімейство супутників зв'язку поповнилося супутником "Веселка", що функціонує на геостаціонарній орбіті. Потім з'явився супутник "Екран" з більш потужним передавачем і простішими наземними станціями. Після перших розробок супутників настав новий період у розвитку техніки супутникового зв'язку, коли супутники стали виводити на геостаціонарну орбіту за якою вони рухаються синхронно з обертанням Землі. Це дозволило встановити цілодобовий зв'язок між наземними станціями, використовуючи супутники нового покоління: американські "Сінком", "Ерлі берд" і "Інтелсат" російські - "Веселка" і "Горизонт".

Велике майбутнє пов'язують з розміщенням на геостаціонарній орбіті антенних комплексів.

17 червня 1991, був виведений на орбіту супутник геодезичний ERS-1. Головним завданням супутників повинні були стати спостереження за океанами і покритими льодом частинами суші, щоб представити кліматологів, океанографів і організаціям з охорони навколишнього середовища дані про ці малодосліджених регіонах. Супутник був оснащений найсучаснішою апаратурою мікрохвильової, завдяки якій він готовий до будь-якої погоди: "очі" його радіолокаційних приладів проникають крізь туман і хмари і дають чітке зображення поверхні Землі, через воду, через сушу, - і через лід. ERS-1 був націлений на розробку льодових карт, які надалі допомогли б уникнути безліч катастроф, пов'язаних із зіткненням кораблів з айсбергами і т.д.

При всьому тому, розробка судноплавних маршрутів це, говорячи образною мовою, тільки верхівка айсберга, якщо тільки згадати про розшифровку даних ERS про океанах і покритих льодом просторах Землі. Нам відомі тривожні прогнози загального потепління Землі, які призведуть до того, що розтануть полярні шапки і підвищиться рівень моря. Затоплено будуть всі прибережні зони, постраждають мільйони людей.

Але нам невідомо, наскільки правильні ці прогнози. Тривалі спостереження за полярними областями за допомогою ERS-1 і його послідовника (наприкінці осені 1994 року) - супутника ERS-2 представляють дані, на підставі яких можна зробити висновки про ці тенденції. Вони створюють систему "раннього виявлення" у справі про танення льодів.

Завдяки знімках, які супутник ERS-1 передав на Землю, ми знаємо, що дно океану з його горами і долинами як би "віддруковується" на поверхні води. Так вчені можуть скласти уявлення про те, чи є відстань від супутника до морської поверхні (з точністю до десяти сантиметрів зміряне супутниковими радарним висотоміром) вказівкою на підвищення рівня моря, або ж це "відбиток" гори на дні.

Хоча спочатку супутник ERS-1 був розроблений для спостережень за океаном і кригою, він дуже швидко довів свою багатосторонність і по відношенню до суші. У сільському і лісовому господарстві, у рибальстві, геології та картографії фахівці працюють з даними, що подаються супутником. Оскільки ERS-1 після трьох років виконання своєї місії він все ще працездатний, вчені мають шанс експлуатувати його разом з ERS-2 для спільних завдань, як тандем. І вони збираються отримувати нові відомості про топографії земної поверхні і надавати допомогу, наприклад, в попередження про можливі землетруси.

Супутник ERS-2 оснащений, крім того, вимірювальним приладом Global Ozone Monitoring Experiment Gome, який враховує обсяг і розподіл озону та інших газів в атмосфері Землі. За допомогою цього приладу можна спостерігати за небезпечної озонової дірою і змінами, що відбуваються. Одночасно за даними ERS-2 можна відводити близьке до землі UV-B випромінювання.

На тлі безлічі загальних для всього світу проблем навколишнього середовища, для вирішення яких повинні надавати основну інформацію і ERS-1, і ERS-2, планування судноплавних маршрутів здається порівняно незначним підсумком роботи цього нового покоління супутників. Але це одна з тих сфер, в якій можливості комерційного використання супутникових даних використовуються особливо інтенсивно. Це допомагає при фінансуванні інших важливих завдань. І це має в області охорони навколишнього середовища ефект, який важко переоцінити: швидкі судноплавні шляхи вимагають меншої витрати енергії. Або згадаємо про нафтових танкерах, які в шторм сідали на мілину або розбивалися і тонули, втрачаючи свій небезпечний для навколишнього середовища вантаж. Надійне планування маршрутів допомагає уникнути таких катастроф.

У передових космічних держав світу – Росії та США приблизно 15 років тому невдачі йшли одна за одною. Катастрофи космічних кораблів "Челенджер" році та "Колумбії" також призвели до затримання важливих запусків, тому що вони розроблялись як основний носій для виводу на орбіту інших апаратів. Потім у Росії змінилась політична обстановка, що привело до скорочення бюджету космічної програми.

Але у останні роки використання нових орбітальних телескопів дозволило отримати цікаві результати, які зробили новий поштовх для дослідження космосу. Найвидатнішим орбітальним телескопом був "Хаббл". Телескоп постійно модернізували, щоб якість його роботи відповідала сучасним цифровим технологіям. Він зробив вагомий вклад у дослідження Сонячної системи у виді фотознімків планет. Серед інших зроблених ним знімків є знімки народження та смерті зірок, включаючи, можливо, найяскравішу з усіх зірок Всесвіту, сховану за хмарою космічного


28-04-2015, 23:38


Страницы: 1 2 3
Разделы сайта