Сейчас основной точкой зрения по поводу природы феномена является модель, согласно которой Гигантский гексагон представляет собой некую стабильную волну, окружающую полюс.
3. КОСМИЧЕСКИЕ ХАРАКТЕРИСТИКИ
При пролете около Сатурна АМС "Вояджер-1" обнаружила явления, которые, по-видимому, представляют собой интенсивные всплески радиоизлучения в районе планеты. Всплески происходили во всем регистрируемом частотном диапазоне и, возможно, исходят от колец планеты. Согласно другим предположениям, всплески могли быть порождены молниями в атмосфере планеты. Приборы АМС регистрировали скачок напряжения, в 106 раз превышающий то, что обусловила бы столь же удаленная вспышка молнии в земной атмосфере.
Ультрафиолетовый спектрометр зарегистрировал в южной полярной области Сатурна полярные сияния, охватывающие область протяженностью свыше 8000 км и сравнимые по интенсивности с такими явлениями на Земле.
3.1. МАГНИТОСФЕРА
До тех пор, пока первые космические аппараты не достигли Сатурна, наблюдательных данных о его магнитном поле не было вообще, но из наземных радиоастрономических наблюдений следовало, что Юпитер обладает мощным магнитным полем. Об этом свидетельствовало нетепловое радиоизлучение на дециметровых волнах, источник которого оказался больше видимого диска планеты, причем он вытянут вдоль экватора Юпитера симметрично по отношению к диску. Такая геометрия, а также поляризованность излучения свидетельствовали о том, что наблюдаемое излучение магнитно-тормозное и источник его - электроны, захваченные магнитным полем Юпитера и населяющие его радиационные пояса, аналогичные радиационным поясам Земли. Полеты к Юпитеру подтвердили эти выводы.
Поскольку Сатурн весьма сходен с Юпитером по своим физическим свойствам, астрономы предположили, что достаточно заметное магнитное поле есть и у него. Отсутствие же у Сатурна наблюдаемого с Земли магнитно-тормозного радиоизлучения объясняли влиянием колец.
Эти предложения подтвердились. Еще при подлете "Пионера-11" к Сатурну его приборы зарегистрировали в около планетном пространстве образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса. В целом магнитосфера Сатурна весьма сходна с земной, но, конечно, значительно больше по размерам. Внешний радиус магнитосферы Сатурна в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны - 26 радиусов.
Радиационные пояса Сатурна настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты.
Как и ожидалось, во внутренней части радиационных поясов, которая "перегорожена" кольцами Сатурна, концентрация заряженных частиц значительно меньше. Причину этого легко понять, если вспомнить, что в радиационных поясах частицы совершают колебательные движения примерно в меридиональном направлении, каждый раз пересекая экватор. Но у Сатурна в плоскости экватора располагаются кольца: они поглощают почти все частицы, стремящиеся пройти сквозь них. В результате внутренняя часть радиационных поясов, которая в отсутствие колец была бы в системе Сатурна наиболее интенсивным источником радиоизлучения, оказывается ослабленной. Тем не менее "Вояджер-1", приблизившись к Сатурну, все же обнаружил нетепловое радиоизлучение его радиационных поясов.
Магнитное поле Сатурна порождается электрическими токами в недрах планеты, - по-видимому, в слое, где под влиянием колоссальных давлений водород перешел в металлическое состояние. При вращении этого слоя с той угловой скоростью вращается и магнитное поле.
Вследствие большой вязкости вещества внутренних частиц планеты все они вращаются с одинаковым периодом. Таким образом, период вращения магнитного поля - это в то же время период вращения большей части массы Сатурна (кроме атмосферы, которая вращается не как твердое тело).
3.2. ПОЛЯРНЫЕ СИЯНИЯ
Полярные сияния Сатурна вызваны высокоэнергетическим потоком от Солнца, которое охватывает планету. Полярное сияние Сатурна может быть замечено только в ультрафиолетовом свете, создание которого не помогает рассмотреть его с Земли.
Это снимок полярного сияния Сатурна, сделанный в ультрафиолете двумерным спектрографом (STIS) космического телескопа. Расстояние до Сатурна - 1.3 млрд. км. Полярное сияние имеет вид кольцевого занавеса, окружающего оба магнитных полюса планеты. Занавес поднимается более чем на полторы тысячи километров над поверхностью облаков Сатурна.
Полярное сияние Сатурна аналогично земному - оба связаны с частицами солнечного ветра, которые захватываются магнитным полем планеты как ловушкой и двигаются вдоль силовых линий от полюса к полюсу туда - обратно. В ультрафиолете полярное сияние лучше выделяется на фоне планеты благодаря сильному люминесцентному свечению водорода.
Изучение полярного сияния Сатурна началось более 20 лет назад: «Пионер 11» обнаружил увеличение яркости Сатурна у полюсов в далеком ультрафиолете в 1979г. Пролеты «Вояждеров» 1 и 2 мимо Сатурна в начале 1980-х дали общее описание полярного сияния. Эта аппараты впервые промерили магнитное поле Сатурна, которое оказалось очень сильным.
3.3. ИНФРАКРАСНОЕ СВЕЧЕНИЕ САТУРНА
Известный своей яркой системой колец и многочисленными спутниками, газовый гигант Сатурн выглядит странным и незнакомым на этом представленном в искусственных цветах снимке, полученном космическим аппаратом «Кассини». Действительно, на этом составном изображении, полученном с помощью визуального и инфракрасного картирующего спектрометра (Visual and Infrared Mapping Spectrometer - VIMS) знаменитые кольца почти не различимы. Они видны с ребра и пере-
секают центр картинки. Самый эффектный контраст на изображении - вдоль терминатора, или границы дня и ночи. Сине-зеленые оттенки справа (на дневной стороне) - это видимый солнечный свет, отраженный от вершин облаков Сатурна. Но слева (на ночной стороне) солнечного света нет, и в инфракрасном излучении теплых внутренних частей планеты, похожем на свет китайского фонарика, видны силуэты деталей более глубоких слоев облаков Сатурна. Тепловое инфракрасное свечение видно также в тенях колец, широкими полосами пересекающих северное полушарие Сатурна.
4. КОЛЬЦЕВАЯ СИСТЕМА САТУРНА
С Земли в телескоп хорошо видны три кольца: внешнее, средней яркости кольцо А; среднее, наиболее яркое кольцо В и внутреннее, неяркое полупрозрачное кольцо С, которое иногда называется креповым. Кольца чуть белее желтоватого диска Сатурна. Расположены они в плоскости экватора планеты и очень тонки: при общей ширине в радиальном направлении примерно 60 тыс.км. они имеют толщину менее 3 км. Спектроскопически было установлено, что кольца вращаются не так, как твердое тело, - с расстоянием от Сатурна скорость убывает. Более того, каждая точка колец имеет такую скорость, какую имел бы на этом расстоянии спутник, свободно движущийся вокруг Сатурна по круговой орбите. Отсюда ясно: кольца Сатурна по существу представляют собой колоссальное скопление мелких твердых частиц, самостоятельно обращающихся вокруг планеты. Размеры частиц столь малы, что их не видно не только в земные телескопы, но и с борта космических аппаратов.
Характерная особенность строения колец - темные кольцевые промежутки (деления), где вещества очень мало. Самое широкое из них (3500 км) отделяет кольцо В от кольца А и называется "делением Кассини" в честь астронома, впервые увидевшего его в 1675 году. При исключительно хороших атмосферных условиях таких делений с Земли видно свыше десяти. Природа их, по-видимому, резонансная. Так, деление Кассини - это область орбит, в которой период обращения каждой частицы вокруг Сатурна ровно вдвое меньше, чем у ближайшего крупного спутника Сатурна - Мимаса. Из-за такого совпадения Мимас своим притяжением как бы раскачивает частицы, движущиеся внутри деления, и в конце концов выбрасывает их оттуда. Бортовые камеры "Вояджеров" показали, что с близкого расстояния кольца Сатурна похожи на граммофонную пластинку: они как бы расслоены на тысячи отдельных узких колечек с темными прогалинами между ними. Прогалин так много, что объяснить их резонансами с периодами обращения спутников Сатурна уже невозможно.
Помимо колец А,В и С "Вояджеры" обнаружили еще четыре: D,E,F и G. Все они очень разрежены и потому неярки. Кольца D и E с трудом видны с Земли при особо благоприятных условиях; кольца F и G обнаружены впервые. Порядок обозначения колец объясняется историческими причинами, поэтому он не совпадает с алфавитным. Если расположить кольца по мере их удаления от Сатурна, то мы получим ряд: D,C,B,A,F,G,E. Особый интерес и большую дискуссию вызвало кольцо F. К сожалению, вывести окончательное суждение об этом объекте пока не удалось, так как наблюдения двух "Вояджеров" не согласуются между собой. Бортовые камеры "Вояджера-1" показали, что кольцо F состоит из нескольких колечек общей шириной 60 км., причем два из них перевиты друг с другом, как шнурок. Некоторое время господствовало мнение, что ответственность за эту необычную конфигурацию несут два небольших новооткрытых спутника, движущихся непосредственно вблизи кольца F, - один из внутреннего края, другой - у внешнего (чуть медленнее первого, так как он дальше от Сатурна). Притяжение этих спутников не дает крайним частицам уходить далеко от его середины, то есть спутники как бы "пасут" частицы, за что и получили название "пастухов". Они же, как показали расчеты, вызывают движение частиц по волнистой линии, что и создает наблюдаемые переплетения компонентов кольца. Но "Вояджер-2", прошедший близ Сатурна девятью месяцами позже, не обнаружил в кольце F ни переплетений, ни каких-либо других искажений формы, - в частности, и в непосредственной близости от "пастухов". Таким образом, форма кольца оказалась изменчивой. Для суждения о причинах и закономерностях этой изменчивости двух наблюдений, конечно, мало. С Земли же наблюдать кольцо F современными средствами невозможно - яркость его слишком мала.
Кольцо D - ближайшее к планете. Видимо, оно простирается до самого облачного шара Сатурна. Кольцо E - самое внешнее. Крайне разряженное, оно в то же время наиболее широкое из всех - около 90 тыс. км. Величина зоны, которую оно занимает, от 3,5 до 5 радиусов планеты. Плотность вещества в кольце E возрастает по направлению к орбите спутника Сатурна Энцелада. Возможно, Энцелад - источник вещества этого кольца. Частицы колец Сатурна, вероятно, ледяные, покрытые сверху инеем. Это было известно еще из наземных наблюдений, и бортовые приборы космических аппаратов лишь подтвердили правильность такого вывода. Размеры частиц главных колец оценивались из наземных наблюдений в пределах от сантиметров до метров. Когда "Вояджер-1" проходил вблизи Сатурна, радиопередатчик космического аппарата последовательно пронизывал радиолучом на волне 3,6 см. кольцо А, деление Кассини и кольцо С.
Затем радиоизлучение было принято на Земле и подверглось анализу. Удалось выяснить, что частицы указанных зон рассеивают радиоволны преимущественно вперед, хотя и несколько по-разному. Благодаря этому оценили средний поперечник частиц кольца А в 10 м, деления Кассини - в 8 м и кольца С - в 2 м. Сильное рассеяние вперед, но уже в видимом свете, обнаружено у колец F и E. Это означает наличие в них значительного количества мелкой пыли (поперечник пылинки около десятитысячных долей мм)
В кольце В обнаружили новый структурный элемент - радиальные образования, получившие названия "спиц" из-за внешнего сходства со спицами колеса. Они также состоят из мелкой пыли и расположены над плоскостью кольца. Не исключено, что "спицы" удерживаются там силами электростатического отталкивания. Любопытно отметить: изображения "спиц" были найдены на некоторых зарисовках Сатурна, сделанных еще в прошлом веке. Но тогда никто не придал им значения. Исследуя кольца, "Вояджеры" обнаружили неожиданным эффект - многочисленные кратковременные всплески радиоизлучения, поступающего от колец. Это не что иное, как сигналы от электростатических разрядов - своего рода молнии. Источник электризации частиц, по-видимому, столкновения между ними. Кроме того, была открыта окутывающая кольца газообразная атмосфера из нейтрального атомарного водорода. "Вояджерами" наблюдалась линия Лайсан-альфа (1216 А) в ультрафиолетовой части спектра. По ее интенсивности оценили число атомов водорода в кубическом сантиметре атмосферы. Их оказалось примерно 600. Нужно сказать, некоторые ученые задолго до запуска к Сатурну космических аппаратов предсказывали возможность существования атмосферы у колец Сатурна. "Вояджерами" была также сделана попытка измерить массу колец. Трудность состояла в том, что масса колец по крайней мере в миллион раз меньше массы Сатурна. Масса колец заведомо меньше 1,7 миллионных долей массы планеты.
4.1. ОТКРЫТИЕ ТОНКОЙ СТРУКТУРЫ КОЛЕЦ
Самая "оригинальная" из планет, планета Сатурн, так же, как и Марс,
находится под пристальным вниманием астрономического населения Земли.
XVII ВЕК: "Ясно вижу кольцо"
Необычный вид планеты Сатурн впервые подметил Галилео Галилей летом 1610 года. Он "с великим удивлением наблюдал Сатурн не в виде одной звезды, а состоящим из трех неподвижных почти касающихся звезд, при этом центральная крупнее боковых и все три расположены на прямой линии... В трубу с меньшим увеличением они не видны как три отдельные звезды: Сатурн представляется удлиненной звездой в форме оливы". Галилей сравнивал боковые звезды с покорными служителями, которые помогают престарелому Сатурну совершать свой путь и всегда держатся по обе стороны от него. Вскоре, однако, природа подшутила над исследователем. В 1612 году кольцо Сатурна оказалось повернутым к Земле ребром и "покорные служители" исчезли из поля зрения галилеевой трубы.
В 1614 году "боковые звезды" Сатурна видел в свою трубу иезуит Кристофер Шайнер, в 1616 году - сам Галилей, а в 30- 50-е годы XVII века их замечали такие известные наблюдатели, как Пьер Гассенди, Франческо Фонтана, Джованни-Батиста Риччиоли, Ян Гевелий. Но хотя отдельные зарисовки планеты определенно показывали кольцевые очертания, разгадать тайну неземного дива никак не удавалось. Даже Гевелий, обнаруживший периодичность смены фаз видимости Сатурна, так и не сумел разобраться, что же являют собой сатурновы украшения, Правильное объяснение "диковинки" планеты и периодических изменений ее вида дал в 1659 году Христиан Гюйгенс, наблюдавший с 1655 года Сатурн сначала в 12-футовый, а затем в новый 23-футовый телескоп; "Опоясан кольцом, тонким, плоским, нигде не прилегающим, к эклиптике наклоненным". Предвидя "недоверие тех, кто считает необычным и неправильным", что он "приписывает небесному телу форму доселе не встречавшуюся, тогда как считается непреложным законом природы, что им подобает сферический вид", Гюйгенс подчеркнул: "я не измыслил это предположение благодаря своей фантазии и воображению.., а ясно вижу кольцо собственными глазами".
1 - Г. Галилей, 1610 год;
2 - К. Шайнер, 1614 год;
3 - П. Гассенди, 1633 год;
4 - Дж. Риччиоли, 1640 год;
5, 6, 7, 8 - Я. Гевелий, 1640-1650 годы;
9, 10 - П. Гассенди, 1645 год;
11 - Е. Дивини, 1647 год;
12 - Ф. Фонтана, 1648 год;
13, 14, 15 - Дж. Риччиоли, 1648-1650 годы;
16, 17- X. Гюйгенс, 1656, 1659 год;
18 - Дж. Кампани, 1664 год;
19 - В. Болл, 1665 год;
20 - Я. Гевелий, 1675 год;
21 - Ж. Кассини, 1676 год
В 1664 году Джузеппе Кампани, один из признанных мастеров телескопостроения, проверяя качество своего 35-футового инструмента, "расщепил" кольцо Сатурна на два - внешнее, более темное, и внутреннее, светлое (кольца А и В по современному обозначению, введенному в XIX веке О. В. Струве). А в 1675 году Христиан Гюйгенс и Жан-Доминик Кассини обнаружили между этими двумя кольцами темную полосу. Ее впоследствии назвали делением Кассини. Таким образом, "классические" (то есть отраженные в школьном учебнике астрономии) особенности кольца Сатурна были установлены в XVII столетии.
XVIII ВЕК: разброд и шатания
С правильными представлениями об устройстве кольца Сатурна впервые встречаемся в одном из трудов Жака Кассини (1715 г.). По его мнению, кольцо могло быть "скоплением спутников, которые находились в одной плоскости и обращались вокруг планеты; ...величина их столь мала, что они не могут быть заметны по отдельности, но в то же время они столь близки друг к другу, что невозможно различить промежутки между ними, поэтому кажется, будто они образуют единое сплошное тело". Эту версию Кассини аргументировал ссылкой на третий закон Кеплера, согласно которому твердое кольцо должно быть разрушено притяжением планеты. Правда, есть веские основания считать, что подобное объяснение природы сатурнова кольца принадлежит другому французскому ученому- Персонье Робервалю, одному из создателей Парижской академии в 1666 году. Однако эта гипотеза была чисто умозрительной, а потому далеко не единственной. В 30-х годах XVIII века французский ученый и инженер П.-Л. Мопертюи предположил, что кольцо Сатурна обязано своим происхождением кометам, которые планета захватывала при близком прохождении. Головы комет становились спутниками Сатурна, а хвосты образовали кольца. Ж.-Ж. Мэран и Ж.-Л. Бюффон, коллеги Мопертюи по Парижской академии, считали кольцо остатком экваториального вещества планеты. По Мэрану, Сатурн первоначально имел большие размеры, но, сжимаясь в результате охлаждения, сбросил внешние слои; согласно Бюффону, кольцо отделилось от планеты вследствие избытка центробежной силы. Впервые темное внутреннее кольцо Сатурна (кольцо С) наблюдал английский астроном Томас Райт. Кольцо Сатурна представилось ему "образованным из многих колец, из которых два видны очень хорошо и заметно третье. Я наблюдал их в рефлектор с 5-футовым фокусом в марте 1739 года, причем внешнее относилось к внутреннему (кольцо А к кольцу В), как 1 к 3, а остальная часть (кольцо С) казалась очень темной. В это время кольцо
28-04-2015, 23:38