Севернее зодиака греки располагали 21 созвездие, а южнее – 15 созвездий: созвездия южного полушария греки знали хуже, так как в древности путешественники редко доходили даже до экватора. Уже в новое время были добавлены неизвестные грекам Южный Крест и другие южные созвездия. Названия созвездий объясняются теми фигурами, которые получались при соединении звёзд, образующих созвездие линиями. Разные народы по-разному истолковывали эти фигуры. Например, в ковше Большой Медведицы греки видели медведя, а арабы – погребальную процессию в виде гроба, перед которыми идут плакальщицы, возглавляемые «предводителем плакальщиц». Некоторые созвездия связаны между собой: Волопаса, т.е. пастуха, греки рассматривали как сторожа медведиц.
Шесть северных созвездий – Цефея, Кассиопеи, Андромеды, Персея, Пегаса и Кита – также связаны общей легендарной об эфиопском царе Кефее (Цефей – латинская форма этого имени), его жене Кассиопее и дочери Андромеде. Согласно этой легенде, Кассиопея оскорбила морских нимф нереид, и в наказание за это морской бог Посейдон послал морское чудовище Кита (представлявшегося зверем с лапами и страшной пастью) опустошать берега Эфиопии. Для спасения страны Кефей должен был принести в жертву свою дочь, имя которой означает «не видевшая мужа». Девушка уже была прикована к скале, когда появился на крылатом коне Пегасе Персей – герой, убивший ужасную Медузу Горгону, взгляд которой обращал всех, кто встречался с ней, в камень. Сам Персей в борьбе с Медузой Горгоной смотрел не на неё, а на её отражение в своём щите. Персей отрубил голову Горгоны и явился к Андромеде с этой головой. Показав её Киту, он превратил его в камень, освободил Андромеду и женился на ней. Расположение указанных созвездий соответствует моменту прибытия Персея.
Созвездие Ориона своим названием обязано имени мифического стрелка, убитого богиней Артемидой за то, что он вызвал её на состязание в метании диска.
Созвездие Геркулеса получило своё название только в новое время, греки называли «Коленопреклоненный».
Созвездие Эридана греки называли «Рекой». Эридан – древнее название реки По, а также одно из имён мифического сына Солнца Фаэтона, согласно легенде упавшего на землю и утонувшего в По.
Известны и другие «преобразования» созвездий. Так, созвездие Корабля Арго впоследствии было разделено на Корму, Паруса, Компас и Киль. А из мелких звёзд, не входящих в известные раньше созвездия, были образованы новые созвездия: Горячие Псы, Щит Собесского, Ящерица, Рысь, Единорог и Секстант.
Ещё более любопытны названия звёзд. Пожалуй, только название Полярной звезды – звезды L созвездия Малой Медведицы (яркие звёзды созвездий принято обозначать греческими буквами L, B, Y, … в порядке их убывающего блеска) – и звёзд, носящих собственные имена людей, понятны без обращения к словарю. Полярная звезда получила своё название потому, что она находится вблизи Северного Полюса мира, вокруг которого происходит видимое суточное вращение звёздного неба. Собственные имена имеют, например, звёзды L и B созвездия Близнецов. Это Кастор и Поллукс, они названы так по именам двух мифических близнецов – сыновей Зевса и Леды. Звезда L Гончих Псов получила своё название Сердце Карла уже в новое время.
Очень немногие звёзды имеют греческие и латинские названия, большинство названий арабского происхождения. Это объясняется тем, что в средние века центр передовой науки находился на Ближнем и Среднем Востоке, где языком науки был арабский язык (как до этого в эллинистических странах – греческий, а позже в Европе – латинский). Важный вклад в науку того времени внесли учёные Средней Азии и Азербайджана: аль-Хорезми и аль-Бируни, Ибн Сина и Омар Хайям, Насир Ад-Дин ат-Туси и Улугбек. Много важных открытий было сделано также учёными Ирана, Ирака, Сирии, Египта, Северо-Западной Африки и мусульманской Испании. Труды этих учёных попадали в Западную Европу через Константинополь. Со многими трудами античной науки европейцы познакомились сначала по их арабским переводам и только потом – с греческими оригиналами.
Большинство арабских названий возникло следующим образом. В знаменитом труде александрийского астронома Клавдия Птолемея (II век до н.э.), обычно называемом нами «Альмагестом», имелся каталог 10022 звёзд, положения которых были измерены астрономами того времени. (Европейцы познакомились с этим трудом по его арабскому переводу: одно из греческих названий этого сочинения – «Мегисте синтаксис», что значит «Величайшая система», - арабы переделали в «аль-Маджисти», откуда и получилось «Альмагест».) Каждую звезду Птолемей характеризовал небольшим описанием, указывающим место этой звезды в созвездии. Именно от этих описаний в арабском переводе и произошли наши названия. Некоторые названия, впрочем, восходят не к Птолемею, а к староарабским названиям звёзд.
Заметим, что название Антареса объясняется тем, что эта звезда, как и Марс, красного цвета и является как бы заместителем Марса (наши названия планет – имена римских богов, соответствующих греческим богам Гермесу, Афродите, Аресу, Зевсу и Хроносу, именами которых называли планеты греки.)
От названия звезды Регул происходит слово «регулировать», так как этой звездой пользовались при регулировании полевых работ в Древнем Египте. Названия Мира и Проксима были даны учёными сравнительно недавно: название Мира получила звезда созвездия Кита за её удивительные свойства (она является долгопериодической переменной звездой), название Проксима было присвоено звезде созвездия Центавра после того, как было обнаружено, что эта звезда расположена ближе всех звёзд к Солнечной системе.
Светимость
Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 4*1^33 эрг/с. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют "карлики", светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая "абсолютная величина" звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8,+10.
Температура
Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым "показателем цвета", равным разности фотографической и визуальной и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра.
У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца. Последовательность спектров звёзд, получающихся при непрерывном изменении температуры их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M, от самых горячих к очень холодным. Каждая буква описывает спектральный класс.
Спектры звезд
Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1 . . . В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего "черного" тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.
Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.
Химический состав звезд
Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Хотя по числу атомов так называемые "тяжелые металлы" (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего, они определяют характер эволюции звезд, т.к. непрозрачность звездных недр для излучений существенно зависит от ее непрозрачности.
Наличие во Вселенной (в частности в звездах) тяжелых элементов имеет важное значение. Совершенно очевидно, что живая субстанция может быть построена только при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор. Царство живого - это сложнейшие сцепления тяжелых элементов. Мы можем, поэтому со всей определенностью сформулировать следующее положение: если бы не было тяжелых металлов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для анализа условий возникновения жизни в тех или иных слоях Вселенной.
Радиус звезд
Энергия, испускаемая элементом поверхности звезды единичной площади в единицу времени, определяется законом Стефана-Больцмана. Поверхность звезды равна 4П^2Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус.
Масса звезд
В сущности, говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.
Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60М.
Рождение звезд
Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.
Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радио изображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны Н», т. е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых.
Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях» перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.
Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов).
В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и, в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода.
Теперь можно представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.
При сжатии протозвезды температура ее повышается, и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.
В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме "спектр — светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение, и газовый шар перестает сжиматься. Протозвезда становится звездой.
Но что произойдет со звездами, когда реакция "гелий — углерод" в центральных областях исчерпает себя, так
28-04-2015, 23:38