Північніше зодіаку греки мали в своєму розпорядженні 21 сузір'я, а південніше – 15 сузір'їв: сузір'я південної півкулі греки знали гірше, так як в давнину мандрівники рідко доходили навіть до екватора. Вже у новий час були додані невідомі грекам Південний Хрест та інші південні сузір'я. Назви сузір'їв пояснюються тими постатями, які виходили при з'єднанні зірок, що утворюють сузір'я лініями. Різні народи по-різному тлумачили ці фігури. Наприклад, у ковші Великої Ведмедиці греки бачили ведмедя, а араби – похоронну процесію у вигляді труни, перед якими йдуть плакальниці, очолювані «провідником плакальниць». Деякі сузір'я пов'язані між собою: Волопаса, тобто пастуха, греки розглядали як сторожа ведмедиць.
Шість північних сузір'їв – Цефея, Кассіопеї, Андромеди, Персея, Пегаса і Кіта – також пов'язані спільною легендарної про ефіопського царя Кефее (Цефей – латинська форма цього імені), його дружині Кассіопеї і дочки Андромеду. Згідно з цією легендою, Кассіопея образила морських німф нереїд, і в покарання за це морський бог Посейдон послав морське чудовисько Кіта (який представлявся звіром з лапами і страшною пащею) спустошувати береги Ефіопії. Для порятунку країни Кефей повинен був принести в жертву свою дочку, ім'я якої означає «не бачила чоловіка». Дівчина вже була прикована до скелі, коли з'явився на крилатому коні Пегасі Персей – герой, який вбив жахливу Медузу Горгону, погляд якої звертав всіх, хто зустрічався з нею, в камінь. Сам Персей у боротьбі з Медузою Горгоною дивився не на неї, а на її відображення в своєму щиті. Персей відрубав голову Горгони і з'явився до Андромеди з цією головою. Показавши її Кіту, він перетворив його на камінь, звільнив Андромеду і одружився на ній. Розташування зазначених сузір'їв відповідає моменту прибуття Персея.
Сузір'я Оріона своєю назвою зобов'язане імені міфічного стрілка, вбитого богинею Артемідою за те, що він викликав її на змагання в метанні диска.
Сузір'я Геркулеса отримало свою назву тільки в новий час, греки називали «Навколішки».
Сузір'я Ерідана греки називали «Рікою». Ерідан – давня назва річки По, а також одне з імен міфічного сина Сонця Фаетона, згідно з легендою що впав на землю і потонув у По.
Відомі й інші «перетворення» сузір'їв. Так, сузір'я Корабля Арго згодом було розділено на Корму, Вітрила, Компас та Кіль. А з дрібних зірок, що не входять у відомі раніше сузір'я, були утворені нові сузір'я: Гарячі Пси, Щит Собеського, Ящірка, Рись, Єдиноріг і Секстант.
Ще більш цікаві назви зірок. Мабуть, тільки назва Полярній зірки – зірки L сузір'я Малої Ведмедиці (яскраві зірки сузір'їв прийнято позначати грецькими буквами L, B, Y,… в порядку їх убутного блиску) – і зірок, що носять власні імена людей, зрозумілі без звернення до словника. Полярна зірка одержала свою назву тому, що вона знаходиться поблизу Північного Полюса світу, навколо якого відбувається видиме добове обертання зоряного неба. Власні імена мають, наприклад, зірки L і B сузір'я Близнюків. Це Кастор і Поллукс, вони названі так по іменах двох міфічних близнюків – синів Зевса і Леди. Зірка L Гончих Псів отримала свою назву Серце Карла вже в новий час.
Дуже небагато зірок мають грецькі і латинські назви, більшість назв арабського походження. Це пояснюється тим, що в середні століття центр передової науки знаходився на Близькому і Середньому Сході, де мовою науки була арабська мова (як до цього в елліністичних країнах – грецький, а пізніше в Європі – латинський). Важливий внесок у науку того часу внесли вчені Середньої Азії та Азербайджану: аль-Хорезмі і аль-Біруні, Ібн Сіна і Омар Хайям, Насир Ад-Дін ат-Тусі і Улугбек. Багато важливих відкриттів було зроблено також вченими Ірану, Іраку, Сирії, Єгипту, Північно-Західної Африки та мусульманської Іспанії. Праці цих учених потрапляли до Західної Європи через Константинополь. З багатьма працями античній науки європейці познайомилися спочатку по їх арабським перекладам і тільки потім – з грецькими оригіналами.
Більшість арабських назв виникло наступним чином. У знаменитій праці олександрійського астронома Клавдія Птолемея (II століття до н.е.), який зазвичай називають нами «Альмагест», були каталог 10022 зірок, положення яких були виміряні астрономами того часу. (Європейці познайомилися з цією працею за його арабському перекладу: одне з грецьких назв цього твору – «Мегісте синтаксис», що означає «Найбільша система», – араби переробили на «аль-Маджісті», звідки і вийшло «Альмагест».) Кожну зірку Птолемей характеризував невеликим описом, що вказує місце цієї зірки в сузір'ї. Саме від цих описів в арабському перекладі і відбулися наші назви. Деякі назви, втім, сягають не до Птолемею, а до староарабскім назвами зірок.
Зауважимо, що назва Антареса пояснюється тим, що ця зірка, як і Марс, червоного кольору і є як би заступником Марса (наші назви планет – імена римських богів, відповідних грецьким богам Гермесу, Афродіті, Аресу, Зевсу і Хронос, іменами яких називали планети греки.)
Від назви зірки Регул походить слово «регулювати», оскільки цією зіркою користувалися при регулюванні польових робіт в Древньому Єгипті. Назви Миру і Проксіма були дані вченими порівняно недавно: назва Світу отримала зірка сузір'я Кита за її дивовижні властивості (вона є довгоперіодичних змінною зіркою), назва Проксіма було присвоєно зірку сузір'я Центавра після того, як було виявлено, що ця зірка розташована ближче всіх зірок до Сонячної системи.
Світність зірки L часто виражається в одиницях світності Сонця, яка дорівнює 4 * 1 ^ 33 ерг/с. За своєю світності зірки дуже сильно різняться. Є зірки білі й блакитні надгіганти (їх, правда, порівняно небагато), світності яких перевершують світність Сонця в десятки і навіть сотні тисяч разів. Але більшість зірок складають «карлики», світності яких значно менше сонячної, найчастіше в тисячі разів. Характеристикою світності є так називається «абсолютна величина» зірки. Видима зоряна величина залежить, з одного боку, від її світності й кольору, з іншого – від відстані до неї. Зірки високої світність мають негативні абсолютні величини, наприклад -4, -6. Зірки низької світності характеризуються великими позитивними значеннями, наприклад +8, +10.
Температура визначає колір зірки і його спектр. Так, наприклад, якщо температура поверхні шарів зірок 3–4 тис. К., то її колір червонуватий, 6–7 тис. К. – жовтуватий. Дуже гарячі зірки з температурою понад 10–12 тис. К. мають білий або голубуватий колір. В астрономії існують цілком об'єктивні методи вимірювання кольору зірок. Останній визначається так званим «показником кольору», рівним різниці фотографічної і візуальної і візуальної зоряної величини. Кожному значенню показника кольору відповідає певний тип спектру.
У холодних червоних зірок спектри характеризуються лініями поглинання нейтральних атомів металів і смугами деяких найпростіших сполук (наприклад, CN, СП, Н20 та ін.) У міру збільшення температури поверхні в спектрах зірок зникають молекулярні смуги, слабшають багато ліній нейтральних атомів, а також лінії нейтрального гелію. Сам вигляд спектру радикально змінюється. Наприклад, у гарячих зірок з температурою поверхневих шарів, що перевищує 20 тис. К, спостерігаються переважно лінії нейтрального та іонізованого гелію, а безперервний спектр дуже інтенсивний в ультрафіолетовій частині. У зірок з температурою поверхневих шарів близько 10 тисяч До найбільш інтенсивні лінії водню, в той час як у зірок з температурою близько 6 тисяч К. лінії іонізованого кальцію, розташовані на кордоні видимій і ультрафіолетовій частині спектру. Зауважимо, що такий вид I має спектр нашого Сонця. Послідовність спектрів зірок, які утворюються при безперервній зміні температури їх поверхневих шарів, позначається наступними літерами: O, B, A, F, G, K, M, від найгарячіших до дуже холодних. Кожна літера описує спектральний клас.
Виключно багату інформацію дає вивчення спектрів зірок. Вже давно спектри переважної більшості зірок розділені на класи. Послідовність спектральних класів позначається літерами O, B, A, F, G, K, M. Існуюча система класифікації зоряних спектрів настільки точна, що дозволяє визначити спектр із точністю до однієї десятої класу. Наприклад, частина послідовності зоряних спектрів між класами B і А позначається як В0, В1… В9, А0 і так далі. Спектр зірок у першому наближенні схожий на спектр випромінює «чорного» тіла з деякою температурою Т. Ці температури плавно змінюються від 40–50 тисяч градусів у зірок спектрального класу О до 3000 градусів у зірок спектрального класу М.Відповідно до цього основна частина випромінювання зірок спектральних класів О і В припадати на ультрафіолетову частину спектру, недоступну для спостереження з поверхні землі.
Характерною особливістю зоряних спектрів є ще наявність у них величезної кількості ліній поглинання, які належать різним елементам. Тонкий аналіз цих ліній дозволив отримати особливо цінну інформацію про природу зовнішніх шарів зірок.
Хімічний склад зовнішніх шарів зірок, звідки до нас «безпосередньо» приходить їх випромінювання, характеризується повним переважанням водню. На другому місці знаходиться гелій, а велика кількість інших елементів досить невелика. Приблизно на кожні десять тисяч атомів водню доводиться тисячі атомів гелію, близько 10 атомів кисню, трохи менше вуглецю та азоту і всього лише один атом заліза. Велика кількість інших елементів абсолютно нікчемною. Без перебільшення можна сказати, що зовнішні шари зірок – це гігантські воднево-гелієві плазми з невеликою домішкою більш важких елементів. Хоча за кількістю атомів так звані «важкі метали» (тобто елементи з атомною масою, більшою, ніж у гелію) займають у Всесвіті дуже скромне місце, їх роль дуже велика. Перш за все, вони визначають характер еволюції зірок, тому що непрозорість зоряних надр для випромінювань істотно залежить від її непрозорості.
Наявність у Всесвіті (зокрема в зірках) важких елементів має важливе значення. Цілком очевидно, що жива субстанція може бути побудована тільки за наявності важких елементів та їхніх сполук. Загальновідома роль вуглецю в структурі живої матерії. Не менш важливі й інші елементи, наприклад залізо, фосфор. Царство живого – це складні зчеплення важких елементів. Ми можемо, тому з усією визначеністю сформулювати таке положення: якщо б не було важких металів, не було б і життя. Тому проблема хімічного складу космічних об'єктів (зір, туманностей, планет) має першорядне значення для аналізу умов виникнення життя в тих чи інших шарах Всесвіту.
Енергія, що випускається елементом поверхні зірки одиничної площі в одиницю часу, визначається законом Стефана-Больцмана. Поверхня зірки дорівнює 4П^ 2. Такім чином, якщо відомі температура і світність зірки, то ми можемо обчислити її радіус.
По суті, кажучи, астрономія не мала і не має в своєму розпорядженні в даний час методом прямого і незалежного визначення маси (тобто не входить до складу кратних систем) ізольовану зірки. І це досить серйозний недолік нашої науки про Всесвіт. Якби такий метод існував, прогрес наших знань був би значно швидшим. Маси зірок змінюються в порівняно вузьких межах. Дуже мало зірок, маси яких більше або менше сонячної в 10 разів. У такій ситуації астрономи мовчазно беруть, що зірки з однаковою світністю і кольором мають однакові маси. Вони визначаються тільки для подвійних систем. Твердження, що одиночна зірка з тією ж світністю і кольором має таку ж масу, як і її «сестра», що входить до складу подвійної системи, завжди слід приймати з певною обережністю.
Вважається, що об'єкти з масами меншими 0,02 М вже не є зірками. Вони позбавлені внутрішніх джерел енергії, і їхня світність близька до нуля. Зазвичай ці об'єкти відносять до планет. Найбільші безпосередньо виміряні маси не перевищують 60М.
Сучасна астрономія має велику кількість аргументів на користь твердження, що зірки утворюються шляхом конденсації хмар газово-пилової міжзоряного середовища. Процес утворення зірок з цього середовища продовжується і в даний час. З'ясування цієї обставини є одним з найбільших досягнень сучасної астрономії. Ще порівняно недавно вважали, що всі зірки утворилися майже одночасно багато мільярдів років тому. Краху цих метафізичних уявлень сприяв, насамперед, прогрес спостережної астрономії і розвиток теорії будови і еволюції зірок. У результаті стало ясно, що багато спостережувані зірки є порівняно молодими об'єктами, а деякі з них виникли тоді, коли на Землі вже була людина.
Важливим аргументом на користь висновку про те, що зірки утворюються з міжзоряного газово-пилової середовища, служить розташування груп завідомо молодих зірок (так званих «асоціацій») в спіральних гілках Галактики. Справа в тому, що згідно з радіоастрономічних спостережень міжзоряний газ концентрується переважно в спіральних рукавах галактик. Зокрема, це має місце і в нашій Галактиці. Більш того, з детальних «радіо зображень» деяких близьких до нас галактик випливає, що найбільша щільність міжзоряного газу спостерігається на внутрішніх (по відношенню до центру відповідної галактики) краях спіралі, що знаходить природне пояснення, на деталях якого ми тут зупинятися не будемо. Але саме в цих частинах спіралей спостерігаються методами оптичної астрономії «зони Н», тобто хмари іонізованого міжзоряного газу. Причиною іонізації таких хмар може бути тільки ультрафіолетове випромінювання масивних гарячих зірок – об'єктів завідомо молодих.
Центральним у проблемі еволюції зірок є питання про джерела їх енергії. У минулому столітті і на початку цього століття пропонувалися різні гіпотези про природу джерел енергії Сонця і зірок. Деякі вчені, наприклад, вважали, що джерелом сонячної енергії є безперервне випадання на його поверхню метеорів, інші шукали джерело в безперервному стисненні Сонця. Звільняється при такому процесі потенційна енергія могла б, за деяких умов «перейти у випромінювання. Як ми побачимо, нижче, це джерело на ранньому етапі еволюції зірки може бути досить ефективним, але він ніяк не може забезпечити випромінювання Сонця протягом необхідного часу.
Успіхи ядерної фізики дозволили вирішити проблему джерел зоряної енергії ще наприкінці тридцятих років нашого століття. Таким джерелом є термоядерні реакції синтезу, що відбуваються в надрах зірок при пануючої там дуже високій температурі (близько десяти мільйонів градусів).
У результаті цих реакцій, швидкість яких сильно залежить від температури, протони перетворюються на ядра гелію, а звільняється енергія повільно «просочується» крізь надра зірок і, врешті-решт, значно трансформована, випромінюється у світовий простір. Це виключно потужне джерело. Якщо припустити, що спочатку Сонце складалося тільки з водню, який у результаті термоядерних реакцій цілком перетвориться на гелій, то виділилося кількість енергії складе приблизно 1052 ерг. Таким чином, для підтримки випромінювання на спостережуваному рівні протягом мільярдів років досить, щоб Сонце «витратило» не понад 10% свого первісного запасу водню.
Тепер можна уявити картину еволюції якої-небудь зірки наступним чином. З різних причин (їх можна вказати кілька) початок конденсуватися хмара міжзоряного газово-пилової середовища. Досить скоро (зрозуміло, за астрономічними масштабами!) Під впливом сил всесвітнього тяжіння з цієї хмари утворюється порівняно щільний непрозорий газовий кулю. Строго кажучи, ця куля ще не можна назвати зіркою, тому що в його центральних областях температура недостатня для того, щоб почалися термоядерні реакції. Тиск газу всередині кулі не в змозі поки врівноважити сили притягання окремих його частин, тому він буде безупинно стискуватися. Деякі астрономи раніше вважали, що такі протозірки спостерігаються в окремих туманностях у вигляді дуже темних компактних утворень, так званих глобул. Успіхи радіоастрономії, однак, змусили відмовитися від такої досить наївною точки зору. Звичайно одночасно утворюється не одна протозірка, а більш-менш численна група їх. Надалі ці групи стають зоряними асоціаціями і скупченнями, добре відомими астрономам. Досить імовірно, що на цьому самому ранньому етапі еволюції зірки навколо неї утворюються згустки з меншою масою, які потім поступово перетворюються на планети.
При стисненні протозірки температура її підвищується, і значна частина звільняється потенційної енергії випромінюється в навколишній простір. Так як розміри стискального газової кулі дуже великі, то випромінювання з одиниці його поверхні буде незначним. Коль скоро потік випромінювання з одиниці поверхні пропорційний четвертого ступеня температури (закон Стефана – Больцмана), температура поверхневих шарів зірки порівняно низька, між тим як її світність майже така ж, як у звичайної зірки з тією ж масою. Тому на діаграмі «спектр – світність» такі зірки розташуються вправо від головної послідовності, тобто потраплять в область червоних гігантів або червоних карликів, залежно від значень їх первинних мас.
Надалі протозірка продовжує стискатися. Її розміри стають менше, а поверхнева температура зростає внаслідок чого спектр стає все більш раннім. Таким чином, рухаючись по діаграмі «спектр – світність», протозірка досить швидко «сяде» на головну послідовність. У цей період температура зоряних надр вже виявляється достатньою для тою, щоб там почалися термоядерні реакції. При цьому тиск газу всередині майбутньої зірки врівноважує тяжіння, і газова куля перестає стискатися. Протозірок стає зіркою.
Але що станеться з зірками, коли реакція «гелій – вуглець» у центральних областях вичерпає себе, так само як і воднева реакція в тонкому шарі, що оточує гаряче щільне ядро? Яка стадія еволюції наступить слідом за стадією червоного гіганта?
Сукупність даних спостережень, а також ряд теоретичних міркувань говорять про те, що на
28-04-2015, 23:39