Моделирование как метод познания окружающего мира

Министерство общего и профессионального образования

Российской Федерации

Пермский государственный педагогический университет

Кафедра философии

Брызгалов Евгений Владимирович

Аспирант кафедры информатики и ВТ

Моделирование как метод познания окружающего мира

Научный руководитель

ХЕННЕР Евгений Карлович,

Профессор, д-р ф-м наук

Реферат представлен в качестве вступительного к кандидатскому экзамену по философии

Пермь

ОГЛАВЛЕНИЕ

Введение. История моделирования как метода познания…………... 3
1. Гносеологическая специфика модели и ее определение…………. 6
2. Классификация моделей и видов моделирования………………… 12
3. Моделирование как средство экспериментального исследования. 18
4. Моделирование и проблема истины……………………………….. 22
Заключение……………………………………………………………... 27
Литература……………………………………………………………… 28

ВВЕДЕНИЕ.

История моделирования как метода познания.

Моделирование как познавательный приём неотделимо от развития знания. Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели.

Многовековой опыт развития науки доказал на практике плодотворность такого подхода.

Однако моделирование как специфическое средство и форма научного познания не является изобретением 19 или 20 века.

Достаточно указать на представления Демокpита и Эпикура об атомах, их форме, и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных веществ с помощью представления о круглых и гладких или крючковатых частицах, сцепленных между собой. Эти представления являются прообразами современных моделей, отражающих ядеpно-электpонное строение атома вещества [5].

По существу, моделирование как форма отражения действительности зарождается в античную эпоху одновременно с возникновением научного познания. Однако в отчётливой форме (хотя без употребления самого термина) моделирование начинает широко использоваться в эпоху Возрождения; Брунеллески, Микеланджело и другие итальянские архитекторы и скульпторы пользовались моделями проектируемых ими сооружений; в теоретических же работах Г. Галилея и Леонардо да Винчи не только используются модели, но и выясняются пределы применимости метода моделирования.

И. Ньютон пользуется этим методом уже вполне осознанно, а в 19 веке трудно назвать область науки или её приложений, где моделирование не имело бы существенного значения; исключительно большую методологическую роль сыграли в этом отношении работы Кельвина, Дж. Максвелла, Ф. А. Кекуле, А. М. Бутлерова и других физиков и химиков — именно эти науки стали, можно сказать, классическими «полигонами» метода моделирования. [1]

20 век принес методу моделирования новые успехи, но одновременно поставил его перед серьезными испытаниями. С одной стороны, развивающийся математический аппарат обнаружил новые возможности и перспективы этого метода в раскрытии общих закономерностей и структурных особенностей систем различной физической природы, принадлежащих к разным уровням организации материи, формам движения. С другой же стороны, теория относительности и, в особенности, квантовая механика, указали на неабсолютный, относительный характер механических моделей, на трудности, связанные с моделированием.

Появление первых электронных вычислительных машин (Джон фон Нейман, 1947) и формулирование основных принципов кибернетики (Норберт Винер, 1948) привели к поистине универсальной значимости новых методов — как в абстрактных областях знания, так и в их приложениях.

В конце 40-х годов в нашей стране кибернетика подвергалась массированным атакам. В литературе, в том числе и в учебных пособиях, утверждалось, что это реакционная лженаука, поставленная на службу империализму, которая пытается заменить мыслящего, борющегося человека машиной в быту и на производстве, используется для разработки электронного оружия, и т.п.

Реабилитация кибернетики произошла благодаря стараниям ряда крупных ученых, прежде всего А.А. Ляпунова, отстаивавших правомерность и материалистичность кибернетического взгляда на мир.[8,12]. Вслед за учеными эту задачу взяли на себя профессиональные философы [14] (Баженов, Бирюков, Новик, Жуков и другие).Это тем более важно подчеркнуть, так как многие направления в науке еще долго оставались под идеологическим запретом (например, генетика). Во время «оттепели» стала интенсивно развиваться и та область кибернетики, которая впоследствии была осознана как проблематика систем искусственного интеллекта. [6]

Моделирование ныне приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе.

Многочисленные факты, свидетельствующие о широком применении метода моделирования в исследованиях, некоторые противоречия, которые при этом возникают, потребовали глубокого теоретического осмысления данного метода познания, поисков его места в теории познания.

Этим можно объяснить большое внимание, которое уделяется философами различных стран этому вопросу в многочисленных работах.

1. Гносеологическая специфика модели и ее определение

На сегодняшний момент нет устоявшейся общепринятой точки зрения на место моделирования среди методов познания. Множество мнений исследователей, занимающихся данным вопросом, тем не менее, укладываются в некоторую область, ограниченную двумя полярными мнениями. Одно из них рассматривает моделирование как некий вторичный метод, подчиненный более общим (менее радикальный вариант той же по сути позиции— моделирование рассматривается исключительно как разновидность такого эмпирического метода познания как эксперимент). Другое же, наоборот, называет моделирование «главным и основополагающим методом познания», в подтверждение приводится тезис, что «всякое вновь изучаемое явление или процесс бесконечно сложно и многообразно и потому до конца принципиально не познаваемо и не изучаемо» [4].

Главной причиной возникновения столь различных позиций автору видится отсутствие общепринятого и устоявшегося в науке определения моделирования. Ниже предпринята попытка анализа нескольких определений термина «моделирование» и непосредственно связанного с ним термина «модель». Это вполне оправдано, так как подавляющее большинство источников определяют моделирование как «исследование процессов, явлений и систем объектов через построение и изучение их моделей». То есть наибольшую сложность представляет проблема определения модели.

Сперва выделим определение, которое предлагает Оксфордский Толковый Словарь [26]. В нем приведено семь определений понятия «модель», из которых наибольший интерес представляют два: «Модель — трехмерное представление субъекта, вещи или структуры; обычно в уменьшенном масштабе» и «Модель — упрощенное описание некоей системы для дальнейших расчетов». Иными словами, авторам не удается выделить настоящие существенные признаки модели и они предлагают различные определения для различных видов моделей (более подробное обсуждение классификации моделей приведено ниже, здесь же отметим, что первое оксфордское «определение» описывает достаточно узкий класс предметных моделей, а второе лежит где-то в плоскости абстрактно-знаковых моделей). Основная ошибка данных определений — их узость, объем понятия «модель» неизмеримо больше, чем предлагаемый авторами словаря.

Сходная проблема (только в менее значительных масштабах) возникает и при анализе определения «модели» в Советском Энциклопедическом Словаре (СЭС). Модель авторами рассматривается двояко. В узком смысле — это «устройство, воспроизводящее, имитирующее строение и действие какого-либо другого (моделируемого) устройства в научных, производственных или практических целях» [18]. Опять-таки слово «устройство», встречающееся в определении автоматически приводит к сужению понятия «модель» как минимум до понятия «материальная модель». Тем не менее, это определение представляет собой гораздо большую ценность, чем первое определение оксфордского словаря, так как содержит внутри себя чрезвычайно важную (как будет показано далее) формулировку, раскрывающую сущность моделирования — «строение и действие».

Второе определение СЭС («Модель — любой образ какого-либо объекта, процесса, явления, используемый в качестве его заместителя или представителя), наоборот, является слишком широким. Сложно предположить, что снимок ядерного взрыва может служить моделью самого взрыва. В данном случае, авторы в стремлении к краткому, но емкому определению принесли в жертву сущность понятия «модель». Данное определение отражает скорее внешние признаки, которыми обладает модель, но не её внутреннее содержание. Однако, рациональное зерно есть и в этом определении — за словом «образ» угадывается более важное (с философской точки зрения) понятие — «отражение».

Ещё одно определение «модели» приведено в учебнике [13]: «Модель является представлением объекта в некоторой форме, отличной от формы его реального существования». Фактически, оно почти совпадает с «широким» определением СЭС, но и здесь авторы заменяют слово «отражение» синонимичным оборотом. Кроме того, использование термина «объект» может быть оправдано в рамках школьного (но не вузовского) учебника, но неприемлемо для полного определения. Современная наука занимается изучением не столько отдельных самостоятельных элементов, сколько их взаимодействий. Потому более оправдано использование в определении термина «система», который вбирает в себя как отдельные элементы, так и их отношения и связи.

В целом же, последние два определения можно признать вполне удовлетворительными и пользоваться ими.

Дальнейший путь развития и улучшения определений связан с целями метода моделирования. Большинство исследователей выделяют три [2,13]:

· Понимание устройства конкретной системы, её структуры, свойств, законов развития и взаимодействия с окружающим миром

· Управление системой, определение наилучших способов управления при заданных целях и критериях

· Прогнозирование прямых и косвенных последствий реализации заданных способов и форм воздействия на систему

Все три цели подразумевают в той или иной степени наличия механизма обратной связи, то есть необходима возможность не только переноса элементов, свойств и отношений моделируемой системы на моделирующую, но и наоборот.

В таком случае, определение моделирования может быть сформулировано так [14]:

«Моделирование-это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система:

1) находящаяся в некотором объективном соответствии с познаваемым объектом;

2) способная замещать его в определенных отношениях;

3) дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте»

(три перечисленных признака по сути являются определяющими признаками модели)

Данное определение, принадлежащее И.Б.Новику и А.А.Ляпунову, по мнению автора реферата, является лучшим из существующих (точнее, из ему известных), поэтому в данной работе он будет придерживаться и опираться на него. Единственное замечание (скорее методологического плана) заключается в том, что автор рассматривает отражение «объект–система», вместо «система–система». Данный недочет вполне простителен, так как определение дано более 50 лет назад, когда уровень науки отличался от современного и теория систем находилась в стадии становления.

Для сравнения приведем ещё два, более современных, определения «модели».

Опpеделение И.Т. Фpолова:

«Моделиpование означает матеpиальное или мысленное имитиpование pеально существующей системы путем специального констpуиpования аналогов (моделей), в котоpых воспpоизводятся пpинципы оpганизации и функциониpования этой системы».[22] Здесь в основе мысль, что модель —сpедство познания, главный ее пpизнак — отобpажение. В то же время механизм обратной связи (третий признак у Ляпунова) четко в определении не прослеживается.

В западной философии эталонным является определение, которое дает В.А. Штофф в своей книге «Моделиpование и философия»: «Под моделью понимается такая мысленно пpедставляемая или матеpиально peализуемая система, котоpая отобpажая или воспpоизводя объект исследования, способна замещать его так, что ее изучение дает нам новую инфоpмацию об этом объекте».[24, C.22] Оно практически полностью совпадает с определением Новика-Ляпунова, но имеет один недостаток — в определении не содержится указаний на относительный характер модели.

Пpи дальнейшем pассмотpении моделей и пpоцесса моделиpования будем исходить из того, что общим свойством всех моделей является их способность так или иначе отобpажать действительность. В зависимости от того, какими сpедствами, пpи каких условиях, по отношению к каким объектам познания это их общее свойство pеализуется, возникает большое pазнообpазие моделей, а вместе с ним и пpоблема классификации моделей.


2. Классификация моделей и видов моделирования

Единая классификация видов моделирования затруднительна в силу уже показанной многозначности понятия «модель» в науке и технике. Её можно проводить по различным основаниям:

·по характеру моделей (т. е. по средствам моделирования);

·по характеру моделируемых объектов;

·по сферам приложения моделирования (моделирование в технике, в физических науках, в химии, моделирование процессов живого, моделирование психики и т. п.)

·по уровням («глубине») моделирования, начиная, например, с выделения в физике моделирования на микроуровне (моделирование на уровнях исследования, касающихся элементарных частиц, атомов, молекул).

В связи с этим любая классификация методов моделирования обречена на неполноту, тем более, что терминология в этой области опирается не столько на «строгие» правила, сколько на языковые, научные и практические традиции, а ещё чаще определяется в рамках конкретного контекста и вне его никакого стандартного значения не имеет.

Наиболее известной является классификация по характеру моделей. Согласно ей различают следующие пять видов моделирования [17]:

1. Предметное моделирование, при котором модель воспроизводит геометрические, физические, динамические или функциональные характеристики объекта. Например, модель моста, плотины, модель крыла самолета и т.д.

2. Аналоговое моделирование, при котором модель и оригинал описываются единым математическим соотношением. Примером могут служить электрические модели, используемые для изучения механических, гидродинамических и акустических явлений.

3. Знаковое моделирование, при котором в роли моделей выступают схемы, чертежи, формулы. Роль знаковых моделей особенно возросла с расширением масштабов применения ЭВМ при построении знаковых моделей.

4. Со знаковым тесно связано мысленное моделирование, при котором модели приобретают мысленно наглядный характер. Примером может в данном случае служить модель атома, предложенная в свое время Бором.

5. Наконец, особым видом моделирования является включение в эксперимент не самого объекта, а его модели, в силу чего последний приобретает характер модельного эксперимента. Этот вид моделирования свидетельствует о том, что нет жесткой грани между методами эмпирического и теоретического познания.

Предметным называется моделирование, в ходе которого исследование ведётся на модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики «оригинала». На таких моделях изучаются процессы, происходящие в оригинале — объекте исследования или разработки (изучение на моделях свойств строительных конструкций, различных механизмов, транспортных средств и т. п.). Если модель и моделируемый объект имеют одну и ту же физическую природу, то говорят о физическом моделировании.

Явление (система, процесс) может исследоваться и путём опытного изучения какого-либо явления иной физической природы, но такого, что оно описывается теми же математическими соотношениями, что и моделируемое явление. Например, механические и электрические колебания описываются одними и теми же дифференциальными уравнениями; поэтому с помощью механических колебаний можно моделировать электрические и наоборот. Такое «предметно-математическое» (аналоговое) моделирование широко применяется для замены изучения одних явлений изучением других явлений, более удобных для лабораторного исследования, в частности потому, что они допускают измерение неизвестных величин. Так, электрическое моделирование позволяет изучать на электрических моделях механические, гидродинамические, акустические и другие явления. Электрическое моделирование лежит в основе аналоговых вычислительных машин (сейчас, правда, практически не использующихся)

При знаковом моделировании моделями служат знаковые образования какого-либо вида: схемы, графики, чертежи, формулы, графы, слова и предложения в некотором алфавите (естественного или искусственного языка)

Важнейшим видом знакового моделирования является математическое (логико-математическое) моделирование, осуществляемое средствами языка математики и логики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, которые выполняет человек или машина (преобразования математических, логических, химических формул, преобразования состояний элементов цифровой машины, соответствующих знакам машинного языка, и др.). Современная форма «материальной реализации» знакового (прежде всего, математического) моделирования - это моделировании на цифровых электронных вычислительных машинах, универсальных и специализированных. Такие машины - это своего рода «чистые бланки», на которых в принципе можно зафиксировать описание любого процесса (явления) в виде его программы, т. е. закодированной на машинном языке системы правил, следуя которым машина может «воспроизвести» ход моделируемого процесса.

Действия со знаками всегда в той или иной мере связаны с пониманием знаковых образований и их преобразований: формулы, математические уравнения и прочие выражения применяемого при построении модели научного языка определенным образом интерпретируются (истолковываются) в понятиях той предметной области, к которой относится оригинал. Поэтому реальное построение знаковых моделей или их фрагментов может заменяться мысленно-наглядным представлением знаков и операций над ними. Эту разновидность знакового моделирования иногда называется мысленным моделированием. Впрочем, этот термин часто применяют для обозначения «интуитивного» моделирования, не использующего никаких чётко фиксированных знаковых систем, а протекающего на уровне «модельных представлений». Такое моделирование есть непременное условие любого познавательного процесса на его начальной стадии.

Таким образом, можно прежде всего различать «материальное» (предметное) и «идеальное» моделирование; первое можно трактовать как «экспериментальное», второе — как «теоретическое» моделирование, хотя такое противопоставление, конечно, весьма условно не только в силу взаимосвязи и обоюдного влияния этих видов моделирования, но и наличия таких «гибридных» форм, как «мысленный эксперимент». «Материальное» моделирование подразделяется, как было сказано выше, на физическое и предметно-математическое моделирование, а частным случаем последнего является аналоговое моделирование. Далее, «идеальное» моделирование может происходить как на уровне самых общих, быть может даже не до конца осознанных и фиксированных, «модельных представлений», так и на уровне достаточно детализированных знаковых систем; в первом случае говорят о мысленном (интуитивном) моделировании, во втором — о знаковом моделировании (важнейший и наиболее распространённый вид его — логико-математическое моделирование). Наконец, моделирование на ЭВМ (часто именуемое «компьютерным») является «предметно-математическим по форме, знаковым по содержанию». [4]

По характеру той стороны объекта, которая подвергается моделированию, уместно различать моделирование структуры объекта и моделирование его поведения (функционирования протекающих в нем процессов и т. п.). Это различение сугубо относительно для химии или физики, но оно приобретает чёткий смысл в науках о жизни, где различение структуры и функции систем живого принадлежит к числу фундаментальных методологических принципов исследования, и в кибернетике, делающей акцент на моделирование функционирования изучаемых систем.

Схожая классификация есть у Б.А. Глинского в его книге «Моделиpование как метод научного исследования», где наpяду с обычным делением моделей по способу их pеализации, они делятся и по хаpактеpу воспpоизведения стоpон оpигинала:

· субстанциональные

· стpуктуpные

· функциональные

· смешанные

А.Н. Кочеpгин [11] пpедлагает pассматpивать и такие классификационные пpизнаки, как: пpиpода моделиpуемых явлений, степень точности, объем отобpажаемых свойств и дp. Но, следует признать, что


10-09-2015, 21:23


Страницы: 1 2
Разделы сайта