МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
КУРСОВАЯ РАБОТА
на тему «Правдоподобные рассуждения»
по дисциплине «Аргументация и логика»
КИЕВ 2011
СОДЕРЖАНИЕ
Введение
1. Статистическая и логическая вероятность
2. Основные формы индуктивных рассуждений
3. Методы индукции Бэкона– Милля
4. Причинность, индукция и гипотеза в социально-гуманитарном познании
5. Умозаключения по аналогии
6. Статистические умозаключения
Заключение
Литература
ВВЕДЕНИЕ
К правдоподобным относят все недедуктивные рассуждения, которых заключения в них не достоверны, а лишь вероятны в той или иной степени. Поэтому их называют также вероятностными рассуждениями. Термин "правдоподобность" означает сходство, подобие с истиной, и на этом основании в традиционной логике правдоподобные рассуждения резко противопоставлялись дедуктивным умозаключениям, которые мы рассматривали в предыдущей главе. В то время как дедуктивное умозаключение полностью переносит истинность посылок на заключение, и его результат оказывается достоверно истинным, посылки правдоподобного рассуждения лишь с той или иной степенью вероятности подтверждают заключение. Эта степень подтверждения не остается постоянной, а изменяется по мере установления новых фактов, подтверждающих или даже опровергающих заключение. Это обстоятельство показывает тесную связь правдоподобных рассуждений с гипотезами, предсказания которых имеют также вероятностный характер.
В современной логике исследование правдоподобных рассуждений ведется на основе понятий и методов исчисления вероятностей. Однако этим понятиям дается иная, а именно логическая интерпретация, ибо логика непосредственно изучает различные виды отношений между высказываниями. В дедуктивной логике такое отношение называют логическим следованием или выводом. Напомним, что сам термин "дедукция" в переводе на русский означает вывод. В наиболее знакомой нам форме правдоподобных рассуждений – в индукции – речь идет о таком логическим отношении, когда на основании изучения ограниченного числа случаев, фактов или явлений делают заключение обо всем их классе. Другими словами, здесь истинность посылок переносится на неисследованные факты, случаи, события. В результате заключение может оказаться и ошибочным. Как показывает сам термин "индукция", означающий наведение, заключение такого рассуждения лишь приближает нас к истине, облегчает ее поиски, наводит на нее, но отнюдь не гарантирует ее достижение. Никаких правил, аналогичных дедукции, в индуктивной логике не существует.
Несмотря на вероятностный характер своих заключений правдоподобные рассуждения по своей структуре, направленности движения мысли, области применения значительно отличаются друг от друга. В связи с этим возникает необходимость специального обсуждения наиболее распространенных форм правдоподобных рассуждений, к которым наряду с индукцией относятся умозаключения по аналогии и статистические выводы.
Говоря о вероятностном характере правдоподобных рассуждений, необходимо выяснить, о какой интерпретации вероятности в данном случае идет речь. В настоящее время почти общепринятой считается частотная, или статистическая, интерпретация вероятности, согласно которой вероятность определяется через относительную частоту в длинной последовательности испытаний. На практике установлено, что массовые случайные или повторяющиеся события обладают определенной устойчивой частотой, которая эмпирически принимается за вероятность таких событий. Такая интерпретация вероятности не подходит для характеристики правдоподобных рассуждений, поскольку последние имеют дело не с эмпирической действительностью, а ее отображением в логических рассуждениях. Разумеется, в реальных научных рассуждениях в физике, химии, биологии и социальных науках мы обращаемся как к статистической, так и к логической интерпретации. С помощью первой оцениваются объективные события изучаемого нами мира, делаются предсказания о степени вероятности их наступления. Логическая вероятность служит для оценки правдоподобности наших предположений и гипотез на основе имеющихся данных. К рассмотрению различных интерпретаций вероятности мы сейчас и обратимся.
1. Статистическая и логическая вероятность
Элементы математической теории вероятностей были введены еще в XVII в., когда ученые обратились к анализу азартных игр. Эти игры организованы таким образом, что шансы участников выиграть оказываются равновозможными. В самом деле, если игральная кость, представляющая собой тщательно изготовленный кубик, на каждой грани которого нанесены очки от 1 до 6, будет подбрасываться вверх, то выпадение каждой грани, т.е. любого числа очков, будет одинаково вероятным. Аналогично этому организована игра в рулетку или в карты. Во всех этих играх существует конечное число альтернатив и осуществление каждой из них является одинаково возможной. Поэтому для численного определения вероятности события (выпадения определенного количества очков при бросании кости, попадания шарика в сектор рулетки, получения карты и т.п.) необходимо подсчитать число всех равновозможных событий и число тех событий, которые благоприятствуют появлению ожидаемого события. Тогда отношение числа благоприятствующих событий к числу всех равновозможных и будет определять вероятность интересующего нас события. Так, выпадение "орла" при бросании монеты будет равно 1/2, так как равновозможными здесь являются как выпадение "орла", так и "решки"; благоприятствующим же случаем считается выпадение именно "орла". Аналогично этому вероятность выпадения 5 очков при бросании кости равна 1/6. В общей форме такое соотношение между благоприятствующими событиями и всеми равновозможными можно представить формулой:
P(A) = m/n.
где Р (А) обозначает вероятность события А;
т – число случаев, благоприятствующих появлению события А;
п – число всех равновозможных событий.
Нередко благоприятствующий случай называют шансом, и поэтому говорят, например, что шанс выбросить пятерку при игре в кости составляет 1/6. Подход к интерпретации вероятности, возникший из анализа азартных игр и применимый к событиям, исходы которых являются симметричными или равновозможными, получил название классической концепции вероятности. Свое завершение и наиболее ясную формулировку он нашел в трудах великого французского математика и астронома П.С. Лапласа.
Однако этот взгляд на вероятность оказался ограниченным с точки зрения практического приложения и неудовлетворительным теоретически. В самом деле, понятие равновозможности, на которое опирается определение вероятности, ничем, по сути дела, не отличается от равновероятности. В результате вероятность определяется через равновероятность, а это означает, что в таком определении допускается порочный круг. Но главное состоит даже не в этом, поскольку симметричные исходы событий либо специально организованы, как в азартных играх, либо встречаются крайне редко. События, с которыми мы встречаемся в науке и в реальной жизни, лишь в исключительных случаях бывают симметричными. Поэтому к ним неприменимо классическое понятие вероятности.
Еще в античном мире ученые обратили внимание на то, что степень возможности определенного повторяющегося события зависит от частоты его появления. Чем чаще повторяется событие, тем выше степень его возможности или вероятности. Такие события впоследствии стали называть массовыми случайными событиями, ибо они во-первых, отличаются от регулярных, закономерно появляющихся событий, во-вторых, они не являются уникальными единичными событиями, о возможности появления которых бессмысленно было бы судить по частоте.
Эта идея вероятности как относительной частоты появления массового случайного события интуитивно осознавалось и в статистике, и в страховом деле, и в конкретных естественных и социально-экономических науках. Но ясное и точное представление о новой интерпретации вероятности сложилось лишь в начале нашего века. В его основе лежит понятие об относительной частоте появления массового случайного события при достаточно длительных наблюдениях или испытаниях. Так, наблюдая случаи заболевания инфекционной болезнью, например дифтеритом, у определенных групп населения, медики могут выявить ее относительную частоту, вычислив отношение числа заболевших за определенный период времени к общему числу группы населения. Аналогично этому качество производимой массовой продукции определяют путем отношения числа бракованных изделий к общему числу изделий, изготовленных в течение недели, месяца или квартала. Очевидно, что ни о каких равновероятностных исходах подобных событий речи быть не может. Поэтому вероятность в таких случаях определяют путем статистических выкладок. Вот почему это понятие вероятности называется статистическим. Численно вероятность определяется через относительную частоту, отсюда ее другое название – частотной. Такой подход принят в статистике, где вероятность отождествляется с относительной частотой появления массового случайного события при достаточно длительных испытаниях. Длительность испытаний в определении никак не оговаривается, ибо она должна быть установлена конкретным исследованием. Однако некоторые ученые считают описанный выше подход к определению статистической вероятности с теоретической точки зрения необоснованным, в связи с чем, например, Р. Мизес и Г. Рейхенбах предложили определять статистическую вероятность как предел относительной частоты события, когда число испытаний стремится к бесконечности:
Р(А) = limm/n
n → ∞
где т – обозначает число появления событий с интересующим исследователя свойством;
п – число всех возможных испытаний.
Правда, против этого также выдвигаются возражения, в частности, утверждают, что бесконечное множество испытаний на практике осуществить невозможно, но с подобной точки зрения пришлось бы отказаться от предельных понятий в науке вообще (мгновенная скорость, абсолютно упругое тело, идеальный газ и т.п.), а между тем они играют существенную роль в построении любой теоретической науки.
Важно обратить внимание на то, что статистическая вероятность характеризует непосредственно не отдельное событие, а определенный класс событий. Когда мы говорим о бракованных изделиях, то речь идет о вероятности появления не индивидуального изделия, а некоторой их группы. Точно так же, когда говорят о вероятности заболевания, то не имеют в виду какого-либо конкретного человека, а лишь определенный процент заболевших. С такой точки зрения статистическое понятие вероятности оказывается шире классического, ибо убедиться в правильности того, что при бросании кости выпадает любое количество очков от 1 до 6, можно путем длительных испытаний и их статистического анализа. Более того, если кость или монета будет фальсифицированы, например, нарушением их симметричной формы, то все равно практически только путем длительных бросаний можно установить, какой стороной или гранью монета или костяной кубик будет падать чаще, чем другой.
Субъективную вероятность не следует смешивать с логической вероятностью, которая хотя и не имеет непосредственного отношения к объективному миру, но определяет логическое отношение между посылками и заключением вероятностного рассуждения. Как и отношение логической дедукции (или вывода), логическая вероятность характеризует особую, вероятностную связь между посылками и заключением, и такая связь не зависит от веры, желания и намерения субъекта, поэтому она имеет интерсубъективный характер. Всякий, кто принимает посылки такого правдоподобного рассуждения не может по своему произволу приписывать вероятность заключению, ибо последнее зависит от того, в какой степени посылки подтверждают заключение. Если обозначить логическую вероятность через Р, подтверждающие ее посылки (факты, свидетельства, показания и т.п.) – через Е, а степень подтверждения – через с, тогда заключение правдоподобного рассуждения Н, являющееся гипотезой, можно представить формулой:
Р(Н/Е) = с.
Относительно определения степени вероятности правдоподобного рассуждения мнения исследователей расходятся. Известный английский экономист Дж. M. Кейнс, написавший первый трактат по логической вероятности, считал, что эта степень может быть определена численно только в немногих случаях, чаще всего приходится иметь дело со сравнением одних вероятностей с другими, в некоторых случаях даже такое сравнение оказывается невозможным.
Другой автор системы вероятностей логики X. Джефрис считал логическое понятие вероятности основополагающим, с помощью которого можно определить даже статистическую вероятность. Более осторожную и убедительную позицию занимал известный австрийский логик Р. Карнап, который признавал самостоятельность двух интерпретаций вероятности, каждая из которых имеет свою область применения. Объективная интерпретация анализирует относительную частоту появления массовых случайных событий, интерсубъективная, т.е. логическая вероятность устанавливает вероятностное логическое отношение между посылками и заключением правдоподобного рассуждения. Поскольку в логике чаще всего приходится встречаться с индуктивными рассуждениями, как типичными видами правдоподобных рассуждений, логическую вероятность часто называют индуктивной вероятностью. В связи с этим иногда индуктивное рассуждение истолковывается слишком широко: все недедуктивные рассуждения рассматриваются как индуктивные, но такой подход, как мы покажем ниже, вряд ли обоснован.
Эмпирическое измерение вероятности основано на определении относительной частоты случайных событий. Если нам будут известны начальные или исходные вероятности, то по математическим законам теории вероятностей мы можем найти вероятность образованных из них сложных или совокупных событий: объединения, пересечения, дополнения. В модифицированном виде аппарат теории вероятностей применим также к логическим вероятностям, но здесь определение первоначальных вероятностей наталкивается на серьезные трудности, поскольку степень подтверждения не всякой гипотезы можно определить численно. Тем не менее даже использование понятий "больше", "меньше" и "равно" дает более точное знание, чем чисто интуитивные соображения о степени подтверждения правдоподобных рассуждений в случае индукции или аналогии.
2. Основные формы индуктивных рассуждений
Когда мы определяем индуктивное рассуждение по характеру его заключения, то относим его к более широкому классу вероятностных (или правдоподобных) рассуждений. Но это определение нуждается в указании специфического, видового признака, характерного именно для индукции, в отличие от других правдоподобных рассуждений, например аналогии. В прежней логике существовала традиция рассматривать индукцию как рассуждение, направленное от частного к общему. Частные случаи служили для наведения мысли на истину, но не гарантировали ее достижение. В отличие от этого дедукция направлена в противоположную сторону – на переход от общего знания к частному, перенос истины с посылок на заключение. Несмотря на неудовлетворительность Указанного различия дедукции и индукции с современной точки зрения, все же в нем присутствует немалая доля истины, тем более что современные представления складывались на основе уточнения и совершенствования прежних взглядов. В связи с этим нам кажется вполне правомерным рассматривать такие формы индуктивных рассуждений, как полная и математическая индукция, именно в разделе об индуктивных рассуждениях, хотя заключения, основанные на них, являются достоверно истинными. Подобный подход оправдывается тем, что движение мысли здесь начинается от частного и направлено к общему. А именно с этим традиционная логика связывала индукцию и отличала ее от дедукции.
Полная индукция
Умозаключение, основанное на исследовании всех частных случаев, которые полностью исчерпывают объем данного класса, называют полной индукцией. Заключение такого рассуждения имеет достоверный характер, в связи с чем некоторые логики относят его к дедуктивным умозаключениям. По-видимому, такая традиция восходит еще к Аристотелю, который рассматривал полную индукцию как силлогизм по индукции. Бесспорно, что по характеру полученного знания полная индукция может быть отнесена к дедуктивным умозаключениям, однако по направленности процесса рассуждения от частного к общему она стоит ближе к индуктивным рассуждениям. Правда, это простейший способ индукции, который в отличие от других ее форм не дает принципиально нового знания и не выходит за пределы того, что содержится в ее посылках. Тем не менее общее заключение, полученное на основе исследования частных случаев, суммирует содержащуюся в них информацию и позволяет обобщить ее, взглянуть на нее с иной точки зрения. Именно поэтому полная индукция используется не только в повседневной практике, но и в ходе исследования и обучения. Суммирование информации, ее систематизация, целостный охват множества частных случаев в совокупном знании представляют собой первый шаг на пути к интеграции знания.
Если обозначить суждения, характеризующие некоторое общее свойство частных случаев через Р, а их субъекты соответственно – через S1, S2, ..., Sk, то логическая структура полной индукции может быть представлена схемой:
S1 есть Р;
S2 есть Р;
…………
Sk есть Р.
При этом S1, S2, ..., skисчерпывают весь класс рассматриваемых случаев Si т.е. все S есть Р (i = 1,2,..., к).
В математике доказательства, основанные на полной индукции, называют доказательствами частных случаев (или разбором случаев). Например, доказательство теоремы "Площадь треугольника равна половине произведения его основания на высоту" проводится путем рассмотрения случаев, когда треугольник является остроугольным, прямоугольным и тупоугольным.
Несмотря на простой характер умозаключения полной индукции, иногда и здесь допускаются ошибки, которые связаны главным образом с пропуском какого-либо частного случая, вследствие чего заключение не исчерпывает все случаи и тем самым является необоснованным. Чаще всего это происходит тогда, когда не проводится четкого разграничения между частными случаями или допускается как сознательная уловка в споре, когда одному из его участников оказывается невыгодным рассмотреть все случаи, которые могут опровергнуть его утверждение.
Математическая индукция
Обычно такую индукцию считают типично дедуктивным способом умозаключения не только потому, что она приводит к достоверно истинным заключениям, а из-за ее использования в качестве специфического математического доказательства. Между тем исторически и по характеру рассуждения математическая индукция отличается от обычной дедукции тем, что она начинается с некоторого предположения, которое опирается на наблюдение некоторых частных случаев. Затем, допуская это предположение верным для некоторого случая, скажем, для числа п, доказывают, что оно верно также для последующего числа n + 1. Поскольку непосредственно было найдено, что предположение справедливо относительно натуральных чисел 1, 2, 3, то на основе доказанного предположения, т.е. перехода от п к n + 1, его переносят на все числа натурального ряда. Отсюда нетрудно понять, что математическая индукция опирается на особую структуру образования натурального ряда чисел, где каждое последующее число образуется путем прибавления единицы к предыдущему. Основываясь на этом свойстве натуральных чисел, Б. Паскаль и Я. Бернулли разработали метод доказательства с помощью математической индукции. Чтобы яснее представить суть данного метода, рассмотрим пример из элементарной математики, относящийся к установлению формулы п-го члена арифметической прогрессии. Если нам дана, скажем, прогрессия 1, 3, 5, 7, то каждый последующий член в ней образуется из предыдущего путем прибавления числа 2 – знаменателя прогрессии. Отсюда мы можем сделать допущение, что и во всякой другой арифметической прогрессии любой n-й член получается аналогичным образом. Следовательно, на индуктивной фазе рассуждения предполагается, что для прогрессии а1, а2, а3, ..., аn, an+1 ... ее п-й член ат определяется формулой
an = а1 + (n - 1) d.
Фаза доказательства должна продемонстрировать, что если формула верна для некоторого члена an, то она будет верна и для an+1. Для
11-09-2015, 00:42