Для объяснения загадки ?-распада было предложено много гипотез, имеющих в настоящее время лишь, исторический интерес. В 1922 г. Л. Мейтнер предложила, что ?-электроны растрачивают часть своей энергии внутри атома, когда пролетают через его электронную оболочку. Эта гипотеза подверглась строгой опытной проверке в 1927 г. Эллисом и Вустером. Опыт этих ученых состоял в следующем: радиоактивный препарат RаЕ в толстостенной свинцовой оболочке помещался в медный калориметр. Количество энергии, выделенной препаратом за определенный промежуток времени, точно измерялось. Согласно гипотезе Мейтнер следовало ожидать, что средняя энергия, приходящаяся на один акт распада, должна была бы равняться максимальной энергии в ?-спектре. В действительности же эта энергия оказалась равной средней энергии, составляющей около одной трети от величины граничной энергии ?-частиц. Еще более тщательные опыты, осуществленные в 1930 г. самой Мейтнер совместно с Ортманом, подтвердили результат Эллиса и Вустера. Таким образом, вновь было установлено, что часть энергии ядерного превращения бесследно исчезает.
Единственным выходом из положения представлялось допущение о том, что в процессе ?-распада закон сохранения энергии нарушается. Именно такой выход и предложил Бор в 1930 г. Гипотеза Бора, как и рассмотренная выше, заключалась в предположении, что закон сохранения энергии нарушается в элементарных актах ?-распада, но выполняется статистически для достаточно большого числа таких актов. Во имя решения одной проблемы Бор предлагал столь большую жертву, что если бы она оправдалась, то это означало бы по существу крушение не только физики, но и всего естествознания в целом. Ибо с момента признания закона сохранения и превращения энергии как основы физического естествознания науке не был известен ни один факт, который противоречил бы этому закону. После исследований Комптона и других физиков не было сомнений в выполнении этого закона и в области микромира.
Гипотеза Бора о статистическом выполнении закона сохранения энергии в ?-распаде была опровергнута в 1933 г. опытами Эллиса и Мотта.
Сразу же после появления она встретила дружные возражения физиков. Уж слишком велика была жертва. Один из основоположников современной теории ?-распада швейцарский физик В. Паули писал по этому исподу: "На мой взгляд, эта гипотеза не только неудовлетворительна, но даже недопустима. Прежде всего, в этих процессах электрический заряд сохраняется, а я не вижу оснований считать сохранение заряда более фундаментальным, чем сохранение анергии и импульса".
В 1931 г. на физической конференции в Пасадене Паули доложил ученым о своей интерпретации ?-распада: "Законы сохранения выполняются, так как испускание ?-частиц сопровождается проникающей радиацией из нейтральных частиц... Сумма энергий ?-частицы и нейтральной частицы..., испущенных ядром в отдельном акте, равна энергии, соответствующей верхней границе ?-спектра. Само собой разумеется, что мы допускаем во всех элементарных процессах не только сохранение энергии, но и сохранение импульса и момента количества движения".
Поскольку в результате ?-распада заряд ядра изменяется на единицу, предполагаемая частица должна быть электрически нейтральной. Такой частицей мог бы быть и фотон, но эту возможность отрицал опыт Эллиса и Вустера. Масса ядра при ?-распаде практически не изменяется, и поэтому частица должна была обладать ничтожно малой массой. Таким образом, постулированная Паули частица по споим свойствам отличалась от известных в то время частиц. Позже она была названа нейтрино. Введение этой гипотетической частицы объясняло парадоксы ?-распада. Указанные свойства нейтрино приводили к тому, что оно совершенно свободно проходило сквозь стенки приборов, не испытывая электромагнитных взаимодействий, и поэтому уносимая им энергия не могла быть, естественно, учтена.
Гипотеза нейтрино позволила также отстоять и закон сохранения момента количества движения в ядре. Трудности с этим законом возникли в 1932 г., когда В.Гейзенбергом и Л. Иваненко была предложена нейтронно-протонная схема строения атомов ядра. Согласно этой схеме электронов, в ядре быть не должно, они рождаются в процессе ?-распада. Теория ядра приводила к заключению, что спин исходного ядра в единицах h/2? должен выражаться целым числом. Между тем спин электрона равен половине, а орбитальный момент количества движения электронов мог быть только целым числом h/2?. Поэтому получалось, что в результате ?-распада целый спин ядра должен был бы переходить в полуцелый и наоборот. Это означало нарушение закона сохранения момента количества движения. Эта трудность сейчас устранялась, если нейтрино приписать полуцелый спин (1/2).
Таким образом, согласно гипотезе Паули нейтрино явилось той частицей, которая компенсировала как недостающую энергию, так и спин. В дальнейшем был уточнен и закон сохранения импульса на основе допущения, что импульс ядра отдачи должен быть равен по величине и направлен противоположно суммарному импульсу электрона и нейтрино.
В одном из своих более поздних выступлений Паули подчеркнул, что он всегда был против того, чтобы решать какие бы то ни было трудности в физических проблемах путем отказа от закона сохранения энергии: "Во-первых, я считаю, что аналогия между законами сохранения энергии и сохранения электрического заряда имеет глубокое значение и может являться надежной руководящей нитью. Вряд ли можно, отказавшись от закона сохранения энергии, сохранить закон сохранения электрического заряда, а этот последний закон никогда еще не приводил ни к каким затруднениям. Поэтому я с самого начала отказывался верить в нарушение сохранения энергии".
Гипотеза Паули о нейтрино была изложена впервые в печати с его разрешения двумя участниками семинара Карлсоном и Оппенгеймером в 1932г., а год спустя автор ее, выступая на седьмом Сольвеевском конгрессе, посвященном теме "Строение и свойства атомных ядер", обстоятельно доложил участникам конгресса о тех предпосылках, которые привели его к столь необычной гипотезе).
В 1934 г. итальянский физик Э. Ферми на основе гипотезы о нейтрино и протонно-нейтронной схемы строения атомного ядра создал теорию ?-распада, которая успешно объяснила все основные черты этого процесса. В последующие годы много усилий было затрачено на экспериментальное доказательство существования нейтрино. Сначала эти доказательства были получены косвенно, а в период 1953-1955 гг. путем постановки довольно сложных экспериментов американские физики Коуэн и Ройнее обнаружили нейтрино в свободном состоянии.
Вот что говорит физическая энциклопедия о нейтрино.
"Представление о нейтрино введено в 1930 швейцарским физиком В. Паули с целью объяснить непрерывный энергетический спектр электронов при ?-распаде: общие принципы квантовой механикии закон сохранения энергии требовали, чтобы электроны имели определенную энергию, равную энергии, выделяемой при ?-распаде. Согласно гипотезе Паули, в ?-распаде вместе с электроном рождается новая нейтральная сильно проникающая и, следователь- но, трудно обнаружимая частица с массой <0.01 массы протона. Распределение дискретной порции энергии между нейтрино и электроном и приводит к нарушению моноэнергетичности спектра электронов. Для того чтобы соблюдался и закон сохранения момента кол-ва движения, новой частице приписали полуцелый спин. ... В 1932 Ферми предложил называть новую частицу "нейтрино" (уменьшительное от нейтрон) [4].
Решение проблемы ?-распада окончательно убедило физиков в том, что классические законы сохранения энергии, импульса и момента количества движения выполняются столь же неукоснительно в микромире, как и в макромире. Что касается других двух законов сохранения - массы и электрического заряда, то их выполнение в микромире не вызывало сомнений начиная с 1919 г., когда Резерфорд произвел первое искусственное расщепление атомного ядра азота, бомбардируя его ?-частицами.
§ 3.Специфические законы сохранения в теории элементарных частиц.
Квантовая механика вскрыла специфические закономерности движения и превращения так называемых элементарных частиц. Эти закономерности не сводятся с закономерностям классической механики, и поэтому естественно ожидать, что в микромире наряду с классическими законами сохранения должны действовать свои законы сохранения. Открытие этих законов связано с развитием наших знаний о свойствах элементарных частиц.
Известные в настоящее время элементарные частицы можно объединить в группы, разделение на которые определяется не только различием в массах, но и рядом других существенных свойств (например, спином): фотон, лептоны (в группу лептонов входят два вида нейтрино и антинейтрино, электрон, позитрон), мезоны, барионы.
В 1952 г. группа физиков под руководством Э. Ферми обнаружила первую частицу из открытой большой группы частиц с очень малым временем жизни, так называемых резонансов. Эти образования возникают при сильном взаимодействии элементарных частиц. По мнению известного американского теоретика М. Гелл-Мана, общее число резонансов должно достигать нескольких тысяч. Вновь возник вопрос об "элементарности" частиц.
Было выдвинуто несколько гипотез, смысл которых состоит в том, что все многообразие частиц сводится к нескольким фундаментальным частицам. Наибольшее распространение получила гипотеза Гелл-Манна и Цвейга.
Согласно этой гипотезе все барионы и мезоны рассматриваются как частицы, состоящие из комбинации трех фундаментальных частиц (и их античастиц), которые Гелл-Манн назвал кварками.
На основе гипотезы кварков уже удалось разрешить некоторые трудности теории элементарных частиц. Но попытки экспериментального обнаружения кварков пока еще не увенчались успехом.
В связи с попытками объяснить, почему одни превращения элементарных частиц возможны: а другие нет, было также обобщено и понятие электрического заряда. Вигнер ввел понятие о барионном числе как квантовом числе, равном +1 для нуклонов, -1 для антинуклонов и 0 для ?-мезонов. Физическая природа сохранения барионного числа в настоящее время не выяснена, поскольку неизвестны те свойства симметрии, которые обусловливают действие этого закона.
Для легких частиц (лептонов) введено аналогичное понятие лептонного числа, закон сохранения которого выполняется только в слабых взаимодействиях. Также имеют место и законы сохранения изотопического спина и закон сохранения "странности".
Можно с полным правом утверждать, что на современном уровне развития схема "принцип симметрии - инвариантность - закон сохранения" превратилась в руководящий принцип и является наиболее полным выражением идеи сохранения. Современный физик, исследуя явления в мире элементарных частиц, считает свою работу завершенной, если он может сформулировать закономерности экспериментального материала в краткой форме законов сохранения".
В заключение надо сказать, что принципы симметрии в микромире являются более сложными и глубокими: чем в макромире. Однако, тот факт, что в микромире выполняются все классические законы сохранения, по-видимому, указывает на то, что свойства симметрии пространства-времени в масштабах микромира принципиально не должны отличаться от их свойств в макромире.
Важно отметить и следующее обстоятельство. Теоретической основой вывода законов сохранения классической физики являлись законы Ньтона. Сохраняющиеся величины фигурируют здесь в качестве основных характеристик движущегося тела или системы. Вывод этих законов из принципов симметрии - логическое завершение длительной эволюции физики на протяжении столетий. Важнейшим уроком этой эволюции явился более глубокий подход к законам сохранения, полностью оправдавший себя в физике микромира. Оказалось, что законы сохранения можно получать непосредственно из принципов симметрии, минуя законы движения.
ЗАКЛЮЧЕНИЕ.
В обзоре законов сохранения, действующих в физике микромира, мы не имели возможности коснуться всех вопросов теории элементарных частиц. Это и не входило в нашу задачу. По этому поводу только за последние годы появился ряд превосходных обзоров и монографий, написанных выдающимися учеными, как отечественными, так и зарубежными. Мы ограничимся лишь несколькими заключительными замечаниями относительно специфических законов сохранения в микромире.
Закон сохранения и превращения энергии, закон сохранения импульса, закон сохранения момента количества движения и закон сохранения электрического заряда, так же как и закон сохранения массы, можно считать законами сохранения, имеющими силу как в области макромира, так и в области микромира. Это - законы сохранения, имеющие максимальную степень общности.
Вместе с тем открытие Ли и Янга впервые показало, что наряду с общими законами сохранения существуют и законы сохранения с ограниченной сферой действия. Это - законы сохранения четности, изотопического спина и странности, которые выполняются не при всех видах взаимодействий. Открытие нарушений законов сохранения в некоторых явлениях микромира ставит по-иному вопрос об абсолютизации этих законов. Абсолютными оказываются не законы сохранения, а сама идея сохранения. Именно с таких позиций и подходит к этому вопросу Н.Ф.Овчинников: "Абсолютность принципов сохранения заключается не в том, что тот или иной принцип сохранения не вызывает сомнения в его общности и является абсолютно строгим на вечные времена, но в том, что любой общий принцип сохранения при его возможном нарушении в какой-либо области природы сменяется другим принципом, действующим в этой области. Можно сказать, что абсолютен не тот или иной конкретный закон сохранения, а абсолютна идея сохранения: ни одна область природы не может не содержать устойчивых, сохраняющихся вещей, свойств или отношений, и соответственно ни одна физическая теория не может быть построена без тех или иных сохраняющихся величин.
Уверенность в абсолютности принципов сохранения ведет нас к признанию необходимости строгой проверки всех известных законов, к возможности и даже неизбежности сомнения в их общности, если это будет диктоваться новыми неожиданными фактами развивающейся науки. Такого рода сомнение, если оно оправдывается, может лишь послужить началом развития новых направлений, новых физических теорий".
Если классическая физика знала только пять законов сохранения, то физика микромира насчитывает их более десяти. Это обилие законов сохранения в современной физике связано, с одной стороны, с тем, что закон сохранения является наиболее общим выражением большого количества экспериментальных фактов, а их в настоящее время только в области физики элементарных частиц имеется множество. С другой стороны, можно думать, что обилие законов сохранения связано с несовершенством наших знаний относительно процессов на элементарном уровне материи. В будущем, вероятно, окажется, что многие законы сохранения взаимосвязаны и являются следствием некоей еще более общей симметрии пространства и времени. Однако сейчас они выступают как независимые, и их изучение является основным направлением современных научных исследований.
Принципиально важной является связь законов сохранения микромира с принципами симметрии. То обстоятельство, что при этом некоторые законы сохранения оказываются приближенными, связано, видимо, с неполнотой наших знаний свойств симметрии на субмикроскопическом уровне. Связь законов сохранения со свойствами симметрии была открыта на всех структурных уровнях материи, начиная с макротел и кончая элементарными частицами. В микромире симметрия оказалась вездесущей. На атомном уровне симметрия проявляет себя в определенной структуре энергетических уровней атомов, в частности атома водорода; в ядерной физике - в виде зарядовой инвариантности; на уровне элементарных частиц - в виде ряда специфических законов сохранения. Связь законов сохранения с принципами симметрии является настолько фундаментальной, что ее можно считать наиболее полным выражением идеи сохранения как в макрофизике, так и в микромире.
Другой важной особенностью законов сохранения особенно в философском плане, является их тесная связь с принципом причинности. Именно законы сохранения образуют тот фундамент, на котором зиждется причинно-следственная связь закономерностей природы. Они являются той внутренней цепью, которая обеспечивает логически закономерную связь между причиной и следствием. "Идея сохранения внутренне связана с идеей причинного характера процессов природы. В своей глубокой основе эти две идеи представляют собой лишь стороны принципа самодвижения материи. В самом деле, если материя неразрывна с движением, то движение, как и материя, неуничтожимо и несоздаваемо. Но неразрывность материи и движения, или, иначе, самодвижение материи означает в то же время, что причина всех изменений лежит в самой материи, в ее внутренних законах... Постоянство действия причинно-следственных связей обеспечивается непреходящим характером законов сохранения".
Важно отметить и тот факт, что законы сохранения образуют тот фундамент, на котором основывается преемственность физических теорий. Действительно, рассматривая эволюцию важнейших физических концепций в области механики, электродинамики, теории теплоты, современных физических теорий, мы убеждались в том, что в этих теориях неизменно присутствуют либо одни и те же классические законы сохранения (энергии, импульса и др.), либо наряду с ними появляются новые законы, образуя тот стержень, вокруг которого и идет истолкование экспериментальных фактов. "Общность законов сохранения в старых и новых теориях является еще одной формой внутренней взаимосвязи последних".
Здесь лишь кратко указано на некоторые аспекты связи законов сохранения с общими философскими проблемами. История развития идеи сохранения показывает, что эта связь весьма тесная и глубокая. Неудивительно поэтому, что философы, особенно материалисты, начиная с Ф.Энгельса, проявили большой интерес к идее сохранения как объекту философского и методологического анализа . Особенно глубокие и обстоятельные работы в этом направлении стали появляться в последнее десятилетие, когда выявилась тесная связь законов сохранения с наиболее общими свойствами материи, пространства и времени, с принципами симметрии.
Значительный вклад в разработку философской стороны законов сохранения и общей идеи сохранения внесли советские философы. Здесь прежде всего следует отметить Н.Ф.Овчинникова, в книге которого "Принципы сохранения" дан глубокий всесторонний философский анализ идеи сохранения и ее связи с принципами симметрии, а также работы А.Н,Вяльцева, Ю.В.Скачкова, В.С.Готта и
10-09-2015, 22:50