Концепции современного естествознания

имеет абсолютного характера: утверждения, истинные при определенных условиях, при выходе за границы, в рамках которых проводилась экспериментальная проверка, могут оказаться приближенными и даже ложными. Современное естествознание утратило присущую классическим знаниям простоту и наглядность. Это произошло главным образом из-за того, что интересы современных исследователей из традиционных для классической науки областей переместились туда, где обычный “житейский” опыт и знания об объектах и происходящих с ними явлениях в большинстве случаев отсутствуют.

Постулаты Эйнштейна. Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна . Первый является естественным обобщением принципа относительности Галлилея с механических на все без исключения явления природы и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения. В пользу этого постулата свидетельствует обширный житейский опыт, показывающий, что находящийся в закрытом помещении (трюме корабля) наблюдатель не в состоянии зарегистрировать факт его движения не только в результате постановки механических опытов, но и с помощью своих ощущений, в основе возникновения которых лежат, как известно, электрохимические процессы. Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся не только Майкельсоном, но и впоследствии в более точных экспериментах.

Основные идеи Общей Теории Относительности. Исходя из разработанной им Специальной Теории Относительности А.Эйнштейн сделал вывод о том, что помещенный в неинерциальную систему отсчета наблюдатель должен зарегистрировать наличие искривления пространства. Действительно, находящийся на вращающемся диске наблюдатель, измеряющий отношение длины окружности к радиусу, получит число, отличное от 2Пи, поскольку с точки зрения покоящегося наблюдателя эталон длины будет изменять свои размеры при поворотах относительно обусловленной вращением диска скорости Учитывая аналогию возникающих в неинерциальных системах отсчета сил инерции с гравитационными, А.Эйнштейн предположил, что массивные тела вызывают вокруг себя локальное искривление четырехмерного пространства-времени: Обобщением закона инерции Галилея на случай искривленных пространств является утверждение о том, что мировыми линиями свободных тел являются геодезические (кривые, соответствующие минимальному собственному времени движения между заданными двумя точками). Движение вдоль геодезической в искривленном пространстве с точки зрения трехмерного наблюдателя воспринимается как движение по трехмерной кривой с переменной скоростью, что в рамках классического подхода “объясняется” действием гравитационных сил. Уравнений гравитации в Общей Теории Относительности являются нелинейными: при наличии больших масс принцип суперпозиции нарушается. Экспериментальное подтверждение ОТО. Релятивистская теория гравитации удовлетворяет принципу соответствия ( в пределе малых масс и скоростей из нее непосредственно выводится закон Всемирного тяготения Ньютона ). В то же время уравнения гравитации предсказывают ряд наблюдаемых эффектов, необъяснимых с позиций классической физики: 1. Прецессия эллиптических орбит планет, движущихся в поле сферических тел (зарегистрирована у ближайшей к Солнцу планеты - Меркурия). 2. Эффект “абсолютного” замедления времени в гравитационном поле или при ускоренном движении (зарегистрирован по измерению времени распада нестабильных ядер и “красному смещению” световых волн в гравитационном поле). 3. Искривление лучей света вблизи массивных тел, отличное по величине от эффекта, предсказываемого классической теории (наблюдается по изменению видимого положения звезд вблизи края Солнца). Одним из наиболее веских аргументов в пользу правильности ОТО является ее внутренняя логичность, красота и элегантность.

Геометрические свойства пространства и времени . Геометрические свойства пространства изучаются геометрией , традиционно базирующейся на системе аксиом Евклида . В отличие от математики, для естествознания небезынтересен вопрос, соответствуют ли эти аксиомы реальным свойствам нашего пространства. Опыт показывает, что для наблюдателя, движущегося без ускорения вдали от массивных тел, аксиоматика Евклида выполняется с хорошей точностью. Важной характеристикой материальных систем является их число степеней свободы (минимальной количество чисел, необходимое для исчерпывающего описания положения объекта в пространстве). Чем большим числом степеней свободы обладает объект, тем более трудоемко его описание. Возникает естественный вопрос о минимальном числе степеней свободы, которым может обладать объект в нашем мире. Опыт показывает, что для не взаимодействующих с другими объектами тел это число равно 3 (тремя степенями свободы обладают, например, элементарные частицы с нулевым спином). Об этом свойстве нашего пространства говорят как о его трехмерности (иногда говорят, что трехмерность означает возможность задания трех взаимно перпендикулярных направлений в пространстве). Число степеней свободы большинства реальных объектов может быть существенно большим (спортивный велосипед с хорошо затянутыми болтами и гайками обладает как минимум 18 степенями свободы), однако при решении многих практических задач “внутренние степени свободы” оказываются несущественными (на финише велогонки положение педалей велосипеда лидера никем не регистрируется). Число рассматриваемых степеней свободы можно существенно сократить вплоть до трех (при движении в пространстве), двух (при движении по поверхности) или одной (при движении вдоль заданной кривой). Реальное тело при этом по существу заменяется моделью материальной точки (тело, размеры и форма которого в рассматриваемой ситуации несущественны). Для задания временных характеристик процессов может понадобиться несколько вещественных чисел (жизнь человека можно характеризовать, например, моментами его рождения, свадьбы и смерти). Однако существуют явления, для исчерпывающего временного описания которых достаточно одного числа (напр. распад элементарной частицы, который не имеет длительности, поскольку не может быть разделен на какие-то промежуточные процессы). Существование таких “элементарных” процессов позволяет утверждать, что время одномерно . Аналогично тому, как в пространственном описании вводилась модельное представление о материальной точке, при описании эволюции во времени можно ввести понятие мгновенного события , т.е. процесса, длительностью которого в рассматриваемой ситуации можно принебречь (напр. удар мяча о стену часто можно считать мгновенным, хотя детальное рассмотрение показывает, что это весьма сложный и многоэтапный процесс).

Относительность свойств пространства и времени. Во времена Ньютона считалось, что свойства пространства и времени абсолютны , т.е. не зависят от наличия материальных тел, протекающих процессов и наблюдателей. Современная физика показала ограниченность таких представлений: геометрические свойства пространства и времени тесно связаны с наличием и расположением массивных тел, зависят от характера протекающих процессов и даже от состояния наблюдателя. В связи с этим сейчас принято говорить, что свойства пространства и времени относительны . В классическом естествознании рассматриваются макроскопические объекты и явления, происходящие в существующих независимо от них и друг от друга пространстве и времени, носящих абсолютный характер.


Cущность живого и его осн. признаки

Живую матер. изучает биология- наука о живом, его строении и активн, о природн. сообщ. живых организмов. Биол раздел на отрасли. По объектам исслед: вирусология, бактериол, ботаника, зоолог, антрополог. По свойствам проявл живого- морфология, физиология, молекулярная биология, экология, генетика. По уровню организ. живых объектов: анатомия, гистология, цитология. Уже в 19 веке 2 концепции живого: редукционизм (жизнь- совокупность химич. реакций, специфич. качества жизни не улавливались), витализм (специфика жив. орг. из-за особой жизненной силы). Энгельс- жизнь- способ существования белковых тел. Важнейш. черта живого- обмен веществ с окруж. средой. Это круто, но мало. Есть признаки живого: сложн. упорядоч. структур и высок уровень организации; получение энергии из окруж среды; активное реагир на окруж среду; жив орг в ходе индивид развития изменяются и усложняются; все живое размножается; передают потомкам заложенную в них инфу. в генах; жив. орг. естественно хорошо приспособл. к среде обитания. Жизнь дискретна, она организменна. Между живыми и неживыми – вирусы (они не способны к обмену веществ, но размножаются). Важную роль играют пищевые (трофические) потребности. Орг есть автотрофные (не нужд. в органич. пище) и гетеротрофные. Жизнь – форма сущест сложн открыт. систем, способн к самоорганизац и самовоспроизв. Типлер написал книгу “физика без смерти” и не захотел связывать жизнь с РНК. Жизнь- информация особого рода: закодир. инфа, которая сохраняется естест. отбором. Жизнь вечна, бесконечно и бессмертна. Главн. кртерий жизни- способн. сохранять и передав. инф.

Происхожд. и эволюция жизни

Креационим: жизнь это результ. сверхъест. событий в прошлом. Столкнулись с рядом совпадений, граничащих с чудом. Значение фундамент. констант неслучайно. Панспермия- теория о переносе жизни во вселен с одного космич тела на другое. Вопрос первонач. возникновения не решается. Концепция вечности (всегдашности) жизни по Вернадскому. Нельзя ставить вопрос о происхожд. жизни. Неотделима от космоса и биосфера. Ее химич реакц привели к возикн. жизни. Живое вещ. определяет состав и свойства гидро, атмо, литосферы. Функции жизни в биосфере- биохимич. Теория биххимич революц- жизнь воникла на земле в результ. револ химич и биопроцес. Опарин поддерживал. Жизнь возникла в океане. Произшел синтез орг. веществ, потом первичный бульон. Суть теории биогенеза- жизнь возник. только из предшеств. жизни, но не найдено звено между неживым и живым.




10-09-2015, 22:53

Страницы: 1 2
Разделы сайта