Например, Галилео Галилей при изучении свободного падения тел выдвигал одну за другой несколько гипотез. Причем эти гипотезы он вдвигал на основании того, что природа «стремится применять легкие средства», а значит, и закон нарастания скорости должен происходить «в самой простой и ясной для всякого форме». Но раз скорость растет с ростом пройденного пути, то что может быть проще предположения о том, что скорость пропорциональна пути: V=cS , где с – постоянное число. Галилей долго исследовал и неожиданно обнаружил, что… по такому закону движение вообще происходить не может. У Галилея были все основания обидеться на коварство природы, которая не выбрала самого простого пути. Однако вера в разумность природы у Галилея не угасла. Он рассматривает не менее простое предположение, что нарастание скорости происходит пропорционально времени: V=at . Такое движение он назвал естественно ускоренным. Галилей проявил большую гибкость, сравнительно быстро переориентировавшись с пути на время. В 1609-1610 гг. он открыл верный принцип равноускоренности свободного падения (относительно времени).
Существенным в появлении гипотезы часто является внезапность, неожиданность. Это похоже на ситуацию, когда мы входим в темную комнату, в которой не знаем, где зажигается свет. Отыскивая в темноте выключатель, натыкаемся на какую-то мебель, острые углы, с трудом различаем бесформенные темные массы. Но вот выключатель нашелся, свет зажжен - все сразу стало ясным, обоснованным. Именно так могут иногда выглядеть размышления при решении задачи: гипотеза - это внезапное просветление, вносящее ясность, порядок, связь и целесообразность в детали, которые до этого казались смутными, разбросанными, запутанными, неуловимыми. Она вносит существенно новый связующий элемент в детали задачи. Вслед за ней приходит твердая уверенность, что цель достижима. Внезапность - это очень характерная черта, но ее трудно описать. Появление впечатляющей гипотезы психологи иногда описывают как едва слышную подсказку внутреннего голоса. Любая решающая гипотеза влечет за собой революционную перестройку в общем взгляде на задачу. Вместе с ней элементы проблемы начинают играть новую роль, приобретают новый смысл.
Многие исследователи, изучавшие деятельность человеческого ума, заметили, что существуют две различные категории того, что называют мыслями: к первой относятся те, которые мы порождаем активно, посредством акта мышления, обдумывания. Ко второй - те, которые вспыхивают в нашем сознании самопроизвольно.
Итак, гипотеза может выступать как продукт осознанной организации мышления в научном поиске. Однако не только этот вид деятельности может сформировать гипотезу. Существует бессознательный вид мыслительной деятельности, протекающей на основе спонтанных актов мышления, которыми мы не можем управлять, подобно тому как мы не можем управлять силами природы. Подсознательная работа мышления осуществляется и в периоды перерыва в сознательной работе. Однако, после перерыва проясняются лишь те задачи, решения которых мы желаем всей душой или над решением которых мы напряженно работали. Чтобы вызвать подсознательную деятельность, совершенно необходимо сознательное усилие и напряжение.
«Пробы и ошибки ученого состоят из гипотез. Он формулирует их в словах, чаще всего письменно. А затем он пытается выявить в одной из этих гипотез изъяны, критикуя их или проверяя экспериментально, и в этом ему помогают его коллеги, которые будут довольны, если эти изъяны удастся найти. И если гипотеза не сумеет противостоять критике и не выдержит этих проверок по крайней мере так же хорошо, как ее конкуренты, то она будет отброшена»[3] . Любая проблема в науке для своего решения в принципе допускает множество конкурирующих между собой гипотез, причем все они, конечно, должны соответствовать обнаруженным фактам, а так же предпосылкам и требованиям, предъявленным к решению проблемы.
Этапы генерирования и формулирования гипотез, их логико-теоретической разработки, эмпирического и концептуального обоснования и практической проверки составляют звенья единого, целостного процесса научного исследования, в ходе которого разрешаются проблемы, и тем самым достигается более полное, точное и конкретное знание действительности. Ученый пользуется всеми доступными ему методами исследований, способами рассуждений, эмпирическими и концептуальными средствами, а так же, конечно, опирается на свой опыт, способности, интуицию и т.п. Вот почему изучение процесса научного исследования представляет собой комплексную проблему, в решении которой принимают участие ученые разных специальностей.
Этап генерирования новых идей и гипотез является самым трудным для философско-методологического анализа, т.к. не существует каких-либо логических канонов, алгоритмов или иных систематических процедур, с помощью которых можно было бы строить наиболее правдоподобные гипотезы. Вместе с тем, в ходе развития науки, также логики и методологии научного познания постепенно вырабатывались такие методы, приемы исследования и способы рассуждений, которые в той или иной мере способствовали решению этой задачи. Среди логических методов, которые начали использоваться в естествознании еще с самого начала его зарождения, следует отметить методы индукции и аналогии. Хотя они не приводят к достоверным результатам, но все же помогают строить догадки, выдвигать разумные предположения.
В еще большей мере это справедливо относительно аналогии, моделирования, экстраполяции и других методов логического и математического исследования. Важно обратить внимание на то, что в процессе генерирования новых научных гипотез используются такие способы рассуждений, которые дают не достоверное, а только вероятное, или правдоподобное, заключение и которые поэтому можно назвать недедуктивным. Иными словами, рассуждения, основанные на них, помогают ученому искать истину, но не гарантируют ее получение без дополнительного конкретного исследования.
Для того чтобы отделить наиболее правдоподобные из выдвигаемых гипотез, на их формулировку накладываются некоторые ограничения:
1) гипотеза должна быть синтаксически правильно построенным и семантически осмысленным утверждением внутри некоторого текста;
2) гипотеза должна быть до некоторой степени обоснованной предшествующим знанием или, в случае полной ее оригинальности, по крайней мере, не противоречить научному знанию;
3) гипотеза должны быть не только в принципе проверяемой при изменении знания, но и эмпирически проверяемой наличными методами, т.е. она должна соответствовать развитию научного инструментария.
Приведенные ограничения являются необходимыми и достаточными для квалификации гипотезы как научной, независимо от того, окажется ли она впоследствии истинной или ложной.
Научная идея, даже если она истинна, не возникает на пустом месте. Для того, чтобы гипотеза была принята к рассмотрению, она должна быть связана с имеющимся до ее появления знанием, и только в этом случае она может быть предметом исследования и дальнейшей проверки. Бесспорно, что такого рода обоснование гипотезы в предшествующем знании не является окончательным, и для одних и тех же гипотез часто находят разные обоснования. Однако этот факт свидетельствует только о том, что обоснованность гипотезы является необходимым условием ее приемлемости – отсутствие обоснованности дискредитирует гипотезу настолько, что она не может быть предметом дальнейшего обсуждения.
Степень обоснованности гипотезы может варьироваться от ее теоретического выведения из наличного знания до соответствия не результатам, но общему духу современной науки. Несмотря на все неясности, связанные с понятием о духе времени, это понятие все-таки может быть полезным для понимания принципов принятия гипотез и отказа от них. Так, обращаясь к общему интеллектуальному климату того или иного времени, можно объяснить, почему некоторые гипотезы представлялись совершенно естественными и очевидными, несмотря на их ложность, в то время как другие предположения, будучи истинными, категорически отвергались. Гипотезы не только не появляются на пустом месте, но и оцениваются в свете общекультурного контекста; их формулирование, исследование или принятие составляют один из аспектов развития культуры.
Таким образом, можно сделать два важных вывода. Во-первых, критерий связи с наличным знанием носит двойственный характер, является внутренне противоречивым с точки зрения прогресса: с одной стороны, он предохраняет от совершенно безумных идей, обеспечивая одновременно преемственность, а с другой - может вызвать при неоправданном преувеличении его роли задержку развития научного знания, делая невозможной научную революцию. Во-вторых, столь же внутренне противоречивым и двойственным является и критерий соответствия эмпирическим данным: с одной стороны, он представляет собой необходимое условие истинности и предохраняет от спекуляции, с другой стороны, с его помощью можно оправдать ничем не обоснованные и определенно ложные гипотезы. Критерии обоснованности и соответствия эмпирическим данным, рассматриваемые отдельно друг от друга, должны применяться с большей осторожностью, если хотят избежать догматического отрицания истины или догматического настаивания на лжи. Наиболее правильным будет учет обоих критериев, совместное обращение и к обоснованности и к эмпирической проверке.
Гипотезы присутствуют на всех стадиях научного исследования независимо от его характера - фундаментального или прикладного, однако наиболее выражено их применение в следующих случаях:
1) обобщение и суммирование результатов проведенных наблюдений и экспериментов;
2) интерпретация полученных обобщений;
3) обоснование некоторых ранее введенных предположений;
4) планирование экспериментов для получения новых данных или проверке некоторых допущений.
Гипотезы настолько распространены в науке, что ученые иногда даже не замечают гипотетического характера знания и полагают, что возможны исследования без предпосылок в виде гипотез. Однако это мнение явно ошибочно. Как говорилось выше, исследование состоит в постановке, формулировании и решении проблемы, а каждая проблема возникает только внутри некоторого предварительного знания, содержащего гипотезы, и даже предпосылка имеет гипотетический характер.
Рассмотрим основные функции гипотез в науке.
Во-первых, гипотезы применяются для обобщения опыта, суммирования и предположительного расширения наличных эмпирических данных.
Во-вторых, гипотезы могут быть посылками дедуктивного вывода, т.е. произвольными предположениями гипотетико-дедуктивной схемы, рабочими гипотезами или упрощающими допущениями, принимаемыми даже при сомнении в их истинности. Эти гипотезы позволяют перейти от идеальных объектов теории к опыту и неизбежны в той мере, в какой невозможно устранить идеальные объекты из теории.
В-третьих, гипотезы применяются для ориентировки исследования, придания ему направленного характера. Выполняя эту функцию, гипотеза выступает либо в форме рабочей, либо в форме предварительных и неточных положений программного характера.
В-четвертых, гипотезы используются для интерпретации эмпирических данных или других гипотез.
В-пятых, гипотезы могут применять для защиты других гипотез перед лицом новых опытных данных лили выявленного противоречия с уже имевшимся ранее знанием.
Усовершенствование научной догадки, как и ее выдвижение, совершается по единой схеме: "анализ-синтез-проверка". Циклическое повторение этих шагов приводит к последовательному улучшению первоначальной догадки, пока не будет достигнут результат, успешно выдерживающий другие проверки и дающий удовлетворительное решение проблемы в целом.
Циклическое повторение анализа задачи, синтеза идеи решения и ее проверки подготавливает несколькими путями почву для будущего открытия. Во-первых, углубляется понимание проблемы как за счет выявленных связей в структуре исследуемой проблемы, так и за счет привлечения все более широкой информации по изучаемому вопросу. Во-вторых, каждая относительная неудача существенно ограничивает область дальнейших поисков. Пути возможных решений в начале исследования определяются опытом решения сходных задач и наличной информацией по исследуемой проблеме. В-третьих, исчерпав последовательными циклами "анализ-синтез-проверка" те походы к проблеме, которые подсказывались близкими аналогиями, идеями сходных задач, исследователь бывает вынужден обращаться к более сильным средствам, к более далеким аналогиям, нестандартным, неожиданным параллелям.
Глава 3. Роль интуиции в процессе научного поиска
Существенное значение в научном поиске имеет интуиция (от лат. - пристально смотрю). Интуиция - это способность непосредственного постижения возможного результата деятельности, пути его достижения без предварительного логико-эвристического рассуждения [23]. Она связана как с накопленным опытом и знаниями, так и с врожденными задатками, которые в совокупности определяют способность человеческого мозга совершать «скачки» в процессе познания.
Аналитическое мышление характеризуется тем, что его отдельные этапы отчетливо представлены, объективированы для думающего человека, и он может выразить их в речи. При этом обычно человек осознает как содержание, так и ход мыслей. Мышление может принимать в этом случае форму стройного рассуждения от общего к частному или форму последовательного анализа от частного к общему. В интуитивном мышлении отсутствуют четко определенные этапы. Основная его тенденция – свернутое восприятие всей проблемы сразу. Человек достигает ответа, не осознавая при этом того процесса, посредством которого этот ответ был получен. Более того, даже материал проблемы отражается в этом случае неосознанно. Сам процесс мышления осуществляется в виде скачков, быстрых переходов, с пропуском отдельных звеньев.
Французский математик Анри Пуанкаре так описывает одно из своих открытий: «В течение двух недель я пытался доказать, что не может существовать никакой функции, аналогичной той, которую я назвал впоследствии автоморфной. Я был, однако, совершенно не прав; каждый день я садился за рабочий стол проводил за ним час или два, исследуя большое число комбинаций, и не приходил ни к какому результату.
Однажды вечером, вопреки своей привычке, я выпил черного кофе; я не мог заснуть; идеи теснились, я чувствовал, как они сталкиваются, пока две из них не соединились, чтобы образовать устойчивую комбинацию. К утру я установил существование одного класса этих функций, который соответствует гипергеометрическому ряду; мне оставалось лишь записать результаты, что заняло только несколько часов. Я хотел представить эти функции в виде отношения двух рядов и эта идея была совершенно сознательной и обдуманной: мной руководила аналогия с эллиптическими функциями. Я спрашивал себя, какими свойствами должны обладать эти ряды, если они существуют, и мне без труда удалось построить эти ряды, которые я назвал тета-автоморфными.
В этот момент я покинул Кан, где я тогда жил, чтобы принять участие в геологической экскурсии, организованной Горной школой. Перипетии этого путешествия заставили меня забыть о моей работе. Прибыв в Кутанас, мы сели в омнибус для какой-то прогулки; в момент, когда я встал на подножку, мне пришла в голову идея, без всяких, казалось бы, предшествовавших раздумий с моей стороны, идея о том, что автоморфные функции, были тождественны преобразованиям неевклидовой геометрии. Из-за отсутствия времени я не сделал проверки, так как, с трудом сев в омнибус, я тотчас же продолжил начатый разговор, но я уже имел полную уверенность в правильности сделанного открытия. По возвращению в Кан я на свежую голову и для очистки совести проверил найденный результат»[4]
Интуитивная деятельность представляет одно из проявлений эвристической, результаты которой появляются до того, как они будут обоснованы средствами логического вывода. Она является бессознательной формой психической деятельности, которая использует временно неосознаваемую и тем самым исключенную из активной работы сознания информацию. За способностью «внезапно» угадывать результат или способ его получения на самом деле стоят накопленный опыт и приобретенные ранее знания.
Таким образом, объективно существующие процессы обработки информации, которые называют мышлением, могут в некоторые промежутки времени протекать так, что человек не отдает себе в них отчета, не осознает их. В то же время протекают они по тем же законам, что и осознанное мышление. В подсознании могут быть решены очень сложные мыслительные задачи. При этом сам процесс обработки информации не осознается человеком, а проявляется в сознании лишь его результат, поэтому на нем фокусируется все внимание. Человеку в этом случае кажется, что на него «ниспослано озарение», что удачная гипотеза пришла молниеносно и неизвестно откуда. Это и есть момент «скачка», или «инсайта», который представляет не всегда гениальную идею. Это может быть скромная догадка. Внешне «инсайт» выглядит как логический разрыв, скачок в мышлении, получение результата, не вытекающего однозначно из посылок. У высокоодаренных людей этот скачок может быть огромен. Но в любом акте творчества, даже при решении арифметической школьной задачи, существует такой разрыв, хотя и очень малых размеров.
В математике известно много случаев, когда результат исследований ученых обосновывается скорее интуитивно, нежили на основе формально-логических –правил, принятых в математике. Но эти результаты оказывались верными и доказывались последующими поколениями математиков.
Так Леонард Эйлер один из самых выдающихся ученых в истории науки. Перед смертью он обронил как-то, что Петербургской академии понадобится сорок лет, чтобы разобрать его архив. Он ошибся. Это заняло восемьдесят лет. Приведем здесь один его результат, который при удивительной внешней простоте, может быть наиболее фантастичен. Это формула Эйлера:
e ix =cosx +i sinx
Как Эйлер пришел к своей формуле, хорошо известно. В своем «доказательстве» он использовал возведение в мнимую степень. Но дело-то в том, что с позиций формальной логики эта операция – вопиющее беззаконие. Она чудовищна. О каком тут доказательстве можно было говорить, если самого понятия возведения в произвольную мнимую степень во времена Эйлера не существовало. Это абсурд. Но результат так красив, так заманчив. «Экспериментальные факты» просто заставляют поверить, что должно быть так, что иначе и быть не может. И Эйлер погрешил против религий математика. Для математиков формула Эйлера стала потрясением. В определенном смысле она остается таковой и в наши дни.
Еще одно интересное открытие Эйлера связано с вычислением сумм бесконечных рядов.
В конце XVII в. Якоб Бернулли сформулировал задачу: требуется вычислить сумму ряда обратных квадратов целых чисел
S=(1/n )
Якоб Бернулли – великий математик, но решить свою задачу не смог. Эйлер был ученик его брата Иоганна, от которого и узнал о проблеме. Поначалу все попытки Эйлера получить точный ответ не проходили. Он нашел несколько приближенных формул для суммы. Причем для практических применений – очень
10-09-2015, 22:27