В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения, самых разнообразных материальных объектов от атомов и молекул и до планет Солнечной системы.
Изменения объекта, достигаемые в процессе идеализации, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действительности неосуществимыми. Примером может служить введенная путем идеализации в физику абстракция, известная под названием абсолютно черного тела (такое тело наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя).
Целесообразность использования идеализации определяется следующими обстоятельствами:
Во-первых, «идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математического, анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов. Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии»[33] .
Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.
В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. При этом правильный выбор допустимости подобной идеализации играет очень большую роль.
Следует отметить, что характер идеализации может быть весьма различным, если существуют разные теоретические подходы к изучению какого-то явления. В качестве примера можно указать на три разных понятия «идеального газа», сформировавшихся под влиянием различных теоретико-физических представлений: Максвелла-Больцмана, Бозе-Эйнштейна и Ферми-Дирака. Однако полученные при этом все три варианта идеализации оказались плодотворными при изучении газовых состояний различной природы: идеальный газ Максвелла-Больцмана стал основой исследований обычных молекулярных разреженных газов, находящихся при достаточно высоких температурах; идеальный газ Бозе-Эйнштейна был применен для изучения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.
Будучи разновидностью абстрагирования, идеализация допускает элемент чувственной наглядности (обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью). Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент (его также называют умственным, субъективным, воображаемым, идеализированным).
Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного (идеализированного) эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществленным на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования. В этом случае мысленный эксперимент выступает в роли предварительного идеального плана реального эксперимента.
Вместе с тем мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него.
В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций, проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.
Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы современного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мысленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции. «...Закон инерции, — писали А. Эйнштейн и Л. Инфельд, — нельзя вывести непосредственно из эксперимента, его можно вывести умозрительно — мышлением, связанным с наблюдением. Этот эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов»[34] .
Мысленный эксперимент может иметь большую эвристическую ценность, помогая интерпретировать новое знание, полученное чисто математическим путем. Это подтверждается многими примерами из истории науки.
Метод идеализации, оказывающийся весьма плодотворным во многих случаях, имеет в то же время определенные ограничения. Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем. Это, хорошо видно хотя бы на примере вышеуказанной идеализации «абсолютно черное тело».
Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.
4.4.3. Формализация.
Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков).
Этот прием заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики и математики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.
Ярким примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.
Для построения любой формальной системы необходимо: а) задание алфавита, т. е. определенного набора знаков; б) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»; в) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).
В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.
Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею.
Разумеется, формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семантикой (семантические правила формализованного языка вполне однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формализованный язык обладает свойством моносемичности.
Возможность представить те или иные теоретические положения науки в виде формализованной знаковой системы имеет большое значение для познания. Но при этом следует иметь в виду, что формализация той или иной теории возможна только при учете ее содержательной стороны. «Голое математическое уравнение еще не представляет физической теории, чтобы получить физическую теорию, необходимо придать математическим символам конкретное эмпирическое содержание»[35] .
Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии, например, соответствующая химическая символика, вместе с правилами оперирования ею явилась одним из вариантов формализованного искусственного языка. Все более важное место метод формализации занимал в логике по мере ее развития. Труды Лейбница положили начало созданию метода логических исчислений. Последний привел к формированию в середине XIX в. математической логики, которая во второй половине нашего столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т. д.
Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.
4.4.4. Аксиоматический метод.
При аксиоматическом построении теоретического знания сначала задается набор исходных положений, не требующих доказательства (по крайней мере, в рамках данной системы знания). Эти положения называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию.
Аксиомы — это утверждения, доказательства истинности которых не требуется. Число аксиом варьируется в широких границах: от двух-трех до нескольких десятков. Логический вывод позволяет переносить истинность аксиом на выводимые из них следствия. При этом к аксиомам и выводам из них предъявляются требования непротиворечивости, независимости и полноты. Следование определенным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиоматической системы, сделать это рассуждение более строгим и корректным.
Чтобы задать аксиоматической систему, требуется некоторый язык. В этой связи широко используют символы (значки), а не громоздкие словесные выражения. Замена разговорного языка логическими и математическими символами, как было указано выше, называется формализацией. Если формализация имеет место, то аксиоматическая система является формальной, а положения системы приобретают характер формул. Получаемые в результате вывода формулы называются теоремами, а используемые при этом аргументы — доказательствами теорем. Такова считающаяся чуть ли не общеизвестной структура аксиоматического метода.
4.4.5. Метод гипотезы.
В методологии термин «гипотеза» используется в двух смыслах: как форма существования знания, характеризующаяся проблематичностью, недостоверностью, нуждаемостью в доказательстве, и как метод формирования и обоснования объяснительных предложений, ведущий к установлению законов, принципов, теорий. Гипотеза в первом смысле слова включается в метод гипотезы, но может употребляться и вне связи с ней.
Лучше всего представление о методе гипотезы дает ознакомление с его структурой. Первой стадией метода гипотезы является ознакомление с эмпирическим материалом, подлежащим теоретическому объяснению. Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко второй стадии — выдвижению догадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Вполне допустимо, что на этой стадии выдвигается несколько объяснительных предположений, несовместимых друг с другом.
Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверяется прежде всего на логическую непротиворечивость, особенно если она имеет сложную форму и разворачивается в систему предположений. Далее гипотеза проверяется на совместимость с фундаментальными интертеоретическими принципами данной науки.
На четвертой стадии происходит разворачивание выдвинутого предположения и дедуктивное выведение из него эмпирически проверяемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточняющих деталей.
На пятой стадии проводится экспериментальная проверка выведенных из гипотизы следствий. Гипотеза или получает эмпирическое подтверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Все попытки построить эффективную логику подтверждения и опровержения теоретических объяснительных гипотез пока не увенчались успехом. Статус объясняющего закона, принципа или теории получает лучшая по результатам проверки из предложенных гипотез. От такой гипотезы, как правило, требуется максимальная объяснительная и предсказательная сила.
Знакомство с общей структурой метода гипотезы позволяет определить ее как сложный комплексный метод познания, включающий в себя все многообразие его и форм и направленный на установление законов, принципов и теорий.
Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически проверяемых следствий. Но дедуктивные умозаключения — не единственный логический прием, используемый в рамках метода гипотезы. При установлении степени эмпирической подтверждаемости гипотезы используются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки. Существенное место при выдвижении гипотезы имеет умозаключение по аналогии. Как уже отмечалось, на стадии развития теоретической гипотезы может использоваться и мысленный эксперимент.
Объяснительная гипотеза как предположение о законе — не единственный вид гипотез в науке. Существуют также «экзистенциальные» гипотезы — предположения о существовании неизвестных науке элементарных частиц, единиц наследственности, химических элементов, новых биологических видов и т. п. Способы выдвижения и обоснования таких гипотез отличаются от объяснительных гипотез. Наряду с основными теоретическими гипотезами могут существовать и вспомогательные, позволяющие приводить основную гипотезу в лучшее соответствие с опытом. Как правило, такие вспомогательные гипотезы позже элиминируются. Существуют и так называемые рабочие гипотезы, которые позволяют лучше организовать сбор эмпирического материала, но не претендуют на его объяснение.
Важнейшей разновидностью метода гипотезы является метод математической гипотезы, который характерен для наук с высокой степенью математизации. Описанный выше метод гипотезы является методом содержательной гипотезы. В его рамках сначала формулируются содержательные предположения о законах, а потом они получают соответствующее математическое выражение. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения количественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование.
Сфера применения метода математической гипотезы весьма ограничена. Он применим прежде всего в тех дисциплинах, где накоплен богатый арсенал математических средств в теоретическом исследовании. К таким дисциплинам прежде всего относится современная физика. Метод математической гипотезы был использован при открытии основных законов квантовой механики.
4.5. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания.
4.5.1. Анализ и синтез.
Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т. п.
Анализ — необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ. Заметим, что метод анализа сыграл в свое время важную роль в крушении теории флогистона.
Несомненно, анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания.
Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве.Осуществить этот второй этап в процессе познания — перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого возможно только в том случае, если метод анализа дополняется другим методом — синтезом.
В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т. п.) изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т. е. позволяет понять подлинное диалектическое единство изучаемого объекта.
Анализ фиксирует в основном то специфическое, что отличает части друг от друга. Синтез же вскрывает то существенно общее, что связывает части в единое целое. Анализ, предусматривающий осуществление синтеза, своим центральным ядром имеет выделение существенного. Тогда и целое выглядит не так, как при «первом знакомстве» с ним разума, а значительно глубже, содержательнее.
Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретическом познании. Но и здесь, как и на эмпирическом уровне познания, анализ и синтез - это не две оторванные друг от друга операции. По своему существу они — как бы две стороны единого аналитико-синтетического метода познания.
Эти два взаимосвязанных приема исследования получают в каждой отрасли науки свою конкретизацию. Из общего приема они могут превращаться в специальный метод: так, существуют конкретные методы математического, химического и социального анализа. Аналитический метод получил свое развитие и в некоторых философских школах и направлениях. То же можно сказать и о синтезе.
4.5.2. Индукция и дедукция.
Индукция (от лат. inductio — наведение, побуждение) есть формальнологическое умозаключение, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного к общему.
Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Наряду с другими методами познания, индуктивный метод сыграл важную роль в открытии некоторых законов природы (всемирного тяготения, атмосферного давления, теплового расширения тел и Др.).
Индукция, используемая в научном познании (научная индукция), может реализовываться в виде следующих методов:
1. Метод единственного сходства (во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор,
10-09-2015, 22:26