Направленное бурение

Министерство образования Российской Федерации

Томский политехнический университет

Институт геологии и нефтегазового дела

Геологоразведочный факультет

Кафедра техники разведки месторождений

полезных ископаемых

группа 2440

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по направленному бурению скважин

Выполнил: Естаев Н.Б.

Руководитель: Бондарчук И.Б.

Дата сдачи проекта:

по графику______________

фактически______________

Дата защиты проекта:_________

Оценки:

записка_______

доклад________

зашита________

общая________

Томск 2007


Министерство образования Российской Федерации

Томский политехнический университет

Институт геологоразведки и нефтегазового дела

Кафедра бурения скважин

2007/2008 уч. год

7 семестр группа 2410

Задание № 15

Студенту Естаеву Н.Б. выполнить курсовую работу по направленном бурению скважин.

Исходные данные

1. Полезное ископаемое золото.

2. Проектная глубина скважины 1000 м.

3. Величина допустимого отхода забоя на конечной глубине от заданной точки 40 м.

4. Среднеквадратическая величина отхода пробуренных скважин от заданной проектом точки 20 м.

5. .Глубина скважины, на которой необходима корректировка трассы 670 м.

6. Наименование и краткая характеристика пород в месте корректировки трассы сланцы плотные.

7. Необходимая величина отклонения и направления корректировки по зенитному углу + 6 град. по азимуту + 25 град.

8. Диаметр скважины 76 мм.

9. Спецвопрос: Аварии и осложнения при направленном бурении скважин.

Дата выдачи задания ____________________________________2007 г.

Дата сдачи проекта на проверку ________________________2007 г.

Руководитель проектирования: _____________________________

Содержание

Содержание. 3

Введение. 3

1. Выявление закономерностей естественного искривления скважин. 3

2. Расчет координат проектной скважины.. 3

3. Выбор технических средств и описание методики проведения инклинометрии 3

3.1 Оперативный контроль искривления скважин. 3

3.2 Плановый контроль искривления скважин. 3

3.3 Инклинометры.. 3

3.3.1 Инклинометры для оперативного контроля. 3

3.3.2 Инклинометры для планового контроля. 3

4. Выбор средств и описание технологии борьбы с естественным искривлением 3

5. Выбор средств и описание технологии развития искривления. 3

6. Выбор технических средств и описание технологии искусственного искривления скважины.. 3

7. Расчёт угла установки отклонителя. 3

7. Спецвопрос. 3

Заключение. 3

Список литературы.. 3

Введение

Техника и технология направленного бурения (НБ), отработанная методика проектирования и корректирования траектории геологоразведочных скважин являются одним из средств совершенствования процесса геологоразведочных работ, обеспечивающим сокращение объёма бурения при одновременном повышении информативности скважин.

Курс «Направленное бурение скважин» выделился из общего курса «Бурение скважин» в самостоятельный, что было связано с увеличением информации о естественном искривлении скважин, с развитием техники и технологии НБ. В то же время в производственных геологоразведочных организациях для обобщения опыта НБ, разработки совершенной и внедрение новых технических средств НБ создавались и успешно функционировали специализированные подразделения технической службы бурения. Совершенствование технических средств НБ, измерительной и контрольной аппаратуры и развитие теоретических положений, выполненных в научно-исследовательских (Всесоюзном институте методики и техники разведки, Казахском институте минерального сырья, Забайкальском комплексном институте) и учебных университетах и институтах (Томском политехническим, Свердловском горном и др.) позволили повысить надежность выполнения скважин геологического задания, а также бурить скважины по сложным, но технически и экономически обоснованным траекториям. Большой информационный производственный материал с данными об опыте бурения и показателях процесса искривления скважин, обобщение этого материала, представленное в изданной литературе по технике и технологии НБ скважин, служили базой для последовательного формирования учебного курса по НБ [3, 4].

1. Выявление закономерностей естественного искривления скважин

Закономерности естественного искривления скважин выявляются на основании фактических замеров искривления по группе скважин. Замеры зенитных и азимутальных углов по скважинам 15, 2, 24, 38, 50 приведены в табл. 1.

Таблица 1

Замеры зенитных и азимутальныз углов

Глубина ,м Скв.15 Скв.2 Скв. 24 Скв. 38 Скв. 50
θ α θ α θ α θ α θ α
0 17 65 17 65 15 90 1 60 10 70
100 18 67 18 70 16 92 2 65 11 73
200 19 69 18 79 17 97 2 70 12 74
300 21 74 19 91 19 92 3 79 14 80
400 21 74 21 99 19 93 7 83 17 85
500 22 77 23 103 20 93 10 87 19 88
600 23 78 25 113 22 94 12 81 23 94
700 24 81 29 117 23 96 13 80 22 95
800 22 83 27 110 25 99 16 79 24 97
900 24 90 25 106 29 105 18 79 25 99
1000 27 96 24 104 30 111 20 73 27 99

На основании данных табл. 1 будет проведён корреляционный анализ зависимостей зенитного и азимутального (отдельно) углов от длины скважины и оценена степень связи внутри названных зависимостей с помощью коэффициента корреляции.

Данные для проведения корреляционного анализа связи величины зенитного угла с длиной скважины заносятся в табл. 2.

В столбце li записываются средние значения глубин стометровых отрезков скважин.

В столбце θi записываются средние значения зенитных углов по всем пяти скважинам для соответствующих интервалов глубин.

Таблица 2

Данные для проведения корреляционного анализа связи величины зенитного угла с длиной скважины

li , м θi , град li θi – (li )2 (θi )2 (li ) ∙ (θi )
50 12,5 - 450 - 6,16 202500 37,95 2772
150 13,3 - 350 -5,36 122500 28,73 1876
250 14,4 - 250 -4,26 62500 18,15 1065
350 16,1 - 150 -2,56 22500 6,55 384
450 17,9 - 50 -0,76 2500 0,58 38
550 19,9 50 1,24 2500 1,54 62
650 21,6 150 2,94 22500 8,64 441
750 22,5 250 3,84 62500 14,75 960
850 23,5 350 4,84 122500 23,43 1694
950 24,9 450 6,24 202500 38,94 2808
5000 186,6 825000 179,24 12100

Остальные столбцы рассчитываются в соответствии с приведенными в заголовке таблицы формулами.

м, (1)

где – среднее значение глубины по всей выборке; n – число строк в таблице.

, (2)

где – среднее значение зенитного угла по всей выборке.

м, (3)

где – среднеквадратическое отклонение глубины скважины.

(4)

где – среднеквадратическое отклонение зенитного угла.

Оценка степени связи зенитного угла скважины с её глубиной осуществляется с помощью коэффициента корреляции :

(5)

Искомое корреляционное уравнение зависимости зенитного угла от глубины скважины определяется как:

(6)

На основании проведенных расчётов построены эмпирический (по данным столбцов li и θi табл. 2) и теоретический (по корреляционному уравнению) графики зависимости зенитного угла от глубины скважины (рис. 1).

Рис. 1. Зависимость зенитного угла (θ ) от глубины скважины (l ):

1 – эмпирическая; 2 – теоретическая

Аналогичным образом проводится корреляционный анализ зависимости азимутального угла от глубины скважины.

Таблица 3

Данные для проведения корреляционного анализа связи величины азимутального угла с длиной скважины

li , м αi , град li αi (li )2 (αi )2 (li ) ∙ (αi )
50 71,7 -450 -15,23 202500 231,95 6853,5
150 75,6 -350 -11,33 122500 128,37 3965,5
250 80,5 -250 -6,43 62500 41,34 1607,5
350 85 -150 -1,93 22500 3,72 289,5
450 88,2 -50 1,27 2500 1,61 -63,5
550 90,8 50 3,87 2500 14,98 193,5
650 92,9 150 5,97 22500 35,64 895,5
750 93,7 250 6,77 62500 45,83 1692,5
850 94,7 350 7,77 122500 60,37 2719,5
950 96,2 450 9,27 202500 85,93 4171,5
5000 869,3 825000 649,76 22325

В столбце li записываются средние значения глубин стометровых отрезков скважин.

В столбце αi записываются средние значения азимутальных углов по всем пяти скважинам для соответствующих интервалов глубин.

Остальные столбцы рассчитываются в соответствии с приведенными в заголовке таблицы формулами.

м, (7)

где – среднее значение глубины по всей выборке; n – число строк в таблице.

, (8)

где – среднее значение азимутального угла по всей выборке.

м, (9)

где – среднеквадратическое отклонение глубины скважины.

(10)

где – среднеквадратическое отклонение азимутального угла.

Оценка степени связи азимутального угла скважины с её глубиной осуществляется с помощью коэффициента корреляции :

(11)

Искомое корреляционное уравнение зависимости зенитного угла от глубины скважины определяется как:

(12)

На основании проведенных расчётов построены эмпирический (по данным столбцов li и αi табл. 3) и теоретический (по корреляционному уравнению) графики зависимости азимутального угла от глубины скважины (рис. 2).

Рис. 2. Зависимость азимутального угла (α ) от глубины скважины (l ):

1 – эмпирическая; 2 – теоретическая

2. Расчет координат проектной скважины

На основании полученных в разделе 1 уравнений зависимости зенитного и азимутального углов от глубины скважины рассчитаны значения зенитных и азимутальных углов проектной скважины на глубинах 50, 150, 250, и тд. И заносятся в табл. 4

Таблица 4

Расчет координат траекторий скважин

Интервал глубин, м Средние углы, град

Проекция отрезков на оси

X, Y, Z, м

Координаты скважины, м
θi αi lz lx ly Z X Y
0 – 100 12,5 71,7 97,63 20,55 6,80 97,63 20,55 6,796
100 – 200 13,3 75,6 97,32 22,28 5,72 194,95 42,83 12,52
200 – 300 14,4 80,5 96,86 24,53 4,10 291,81 67,36 16,62
300 – 400 16,1 85 96,08 27,63 2,42 387,88 94,99 19,04
400 – 500 17,9 88,2 95,16 30,72 0,97 483,04 125,71 20,00
500 – 600 19,9 90,8 94,03 34,03 – 0,48 577,07 159,74 19,53
600 – 700 21,6 92,9 92,98 36,77 – 1,86 670,05 196,51 17,67
700 – 800 22,5 93,7 92,39 38,19 – 2,47 762,44 234,69 15,20
800 – 900 23,5 94,7 91,71 39,74 – 3,27 854,14 274,44 11,93
900 – 1000 24,9 96,2 90,70 41,86 – 4,55 944,85 316,29 7,38

Расчет производится по следующим формулам:

(13)

где – проекция i -го отрезка скважины на вертикальную ось Z ; l – длина отрезка скважины по оси, l = 100 м; – средний зенитный угол отрезка скважины на i – м интервале.

(14)

где – проекция i -го отрезка скважины на горизонтальную ось X ; – средний азимут отрезка скважины на i -м интервале.

(15)

где – проекция i -го отрезка скважины на горизонтальную ось Y .

Текущие координаты скважины находятся путём последовательного суммирования проекций отрезков скважин на одноимённые оси:

(16)

(17)

(18)

где Zi , Xi ,Yi – текущие координаты трассы по соответствующим осям.

На основании табл. 4 строится вертикальная и горизонтальная проекции скважины (рис. 3).

Рис. 3. вертикальная и горизонтальная проекции скважины

3. Выбор технических средств и описание методики проведения инклинометрии

В процессе бурения необходимо контролировать положение оси скважины в пространстве с целью: определения истинного положения полезного ископаемого и правильного построения геологического разреза и определения положения забоя скважины.

Различается два вида контроля искривления скважин – оперативный и плановый.

3.1 Оперативный контроль искривления скважин

Оперативный контроль – осуществляется силами буровой бригады через 15 – 20 м бурения скважины или один раз в сутки и предназначен для определения начала существенного искривления скважины и своевременного принятия мер для его устранения.

Оперативный контроль следует проводить при:

1) пересечении буровым снарядом перемежающихся слоев пород различной твердости, сопровождающемся изменением зенитного и азимутального углов;

2) пересечении мягких несцементированных или сильно разрушенных пород, тектонических нарушений, трещин, пустот, а также при выходе из зоны осложнения;

3) смене пород с различными анизотропными свойствами;

4) смене диаметра скважины;

5) перед каждым циклом искусственного искривления и по окончания цикла искривления;

3.2 Плановый контроль искривления скважин

Плановый контроль – осуществляется геофизическими (каротажными) отрядами через определенные интервалы бурения (практически через 200 – 300 м проходки) или по всему стволу скважины после окончания ее бурения до проектной глубины.

Особенности технологии проведения планового контроля:

·измерение зенитных и азимутальных углов осуществляется обычно через 10 – 20 м при подъеме прибора (инклинометра) из скважины;

·скорость подъема прибора не > 2000 – 2500 м/час;

·глубины определяются по счетчику;

·при повторных замерах в одной скважине перекрывается не менее 5 точек прежнего замера;

·результаты измерений заносятся в буровой журнал.

3.3 Инклинометры

По назначению инклинометры разделяются на приборы:

·для измерения только зенитного угла;

·для измерения зенитного угла и азимута.

Датчики для измерения зенитного угла разделяются на две группы:

·использующие принцип горизонтального уровня жидкости;

·использующие принцип отвеса.

Датчики для измерения азимута:

·магнитная стрелка;

·гироскоп;

·щуп.

По способу измерения и передачи информации на поверхность инклинометры подразделяются на:

·забойные, производящие измерения и передачу информации в процессе бурения (телеметрические системы);

·приборы, опускаемые в скважину на кабеле и выдающие информацию в процессе подъема из скважины или спуска;

·автономные приборы, спускаемые на колонне бурильных труб и выдающие информацию только после подъема инструмента.

3.3.1 Инклинометры для оперативного контроля

Автономные компасные инклинометры оперативного контроля

Автономные компасные инклинометры оперативного контроля делятся на две группы [5].

1. Одноточечные приборы, обеспечивающие за один спуск в скважину измерение одной точки ее ствола (зенитного и азимута) в диапазоне зенитных углов от 2 до 178°.

2. Многоточечный фотографический инклинометр МТ-4-40 конструкции ВИТР, обеспечивающий за один спуск в скважину измерение до 100 точек ее ствола с регистрацией на 8-миллиметровой пленке; диапазон его работы от 2 до 60°.

Инклинометры оперативного контроля опускаются в наклонные скважины на тонком канате диаметром 3 – 4 мм с использованием портативных лебедок типа электрической лебедки ЛОК-1500 конструкции ВИТРа, а в горизонтальные и восстающие скважины с помощью бурильной колонны.

Спуск автономных инклинометров оперативного контроля должен осуществляться при использовании блок-трубы (рис. 4) скважины со счетчиком глубины.

К одноточечным инклинометрам относятся [5]:

· электромеханический инклинометр ИОК-42 конструкции ВИТР

· механические малогабаритные инклинометры МИ-42У и МИ-ЗОУ конструкции «Востказгеология».

Автономный одноточечный инклинометр ИОК-42

Автономный одноточечный инклинометр ИОК-42 представляет устройство, обеспечивающее его работу от автономного блока электропитания. Техническая характеристика представлена в табл 5 [5].

Таблица 5

Техническая характеристика ИОК-42

Диапазон измерения углов, градус:

зенитных

азимутальных

0 – 180

0 – 360

Погрешность измерения углов, градус:

зенитных (при углах 3 – 177°)

азимутальных

±1

±2,5

Питание скважинного прибора (сухие элементы А343 или дисковые аккумуляторы типа Д-0,26 С), В 2×4,5

Внешнее гидростатическое давление на защитном кожухе, МПа,

не менее

наружный диаметр защитного кожуха

длина кожуха, в т. ч. с утяжелителем

20

42

2000/3000

Масса, кг, в т. ч. с утяжелителем 8/15,5

Спуск прибора производят с заарретированным (закрепленным) чувствительным измерительным элементом (ЧЭ), который по команде электронного таймера в заданной точке скважины, по истечении установленного времени, освобождает ЧЭ, магнитная стрелка устанавливается в плоскости магнитного меридиана Земли, затем по команде таймера ЧЭ основа закрепляется. После этого прибор извлекается из скважины. На дневной поверхности прибор с ЧЭ извлекается из защитной гильзы, и показания ЧЭ определяются визуально (желательно с помощью увеличительной лупы).

Прибор позволяет проводить измерения в скважинах любого направления от близких к вертикали до восстающих благодаря сферическому магнитно-гравитационному чувствительному элементу ЧЭ (2 – 178°).

При замере скважин с зенитными углами 2 – 60° наиболее эффективно спускать инклинометр на тросе с помощью любой лебедки. При измерении скважин с зенитными углами свыше 60° инклинометр в точку замера доставляется на бурильной колонне. При этом для устранения влияния стальной бурильной колонны на чувствительный элемент (датчик азимута) инклинометр должен быть удален от бурильной колонны на 3 – 5 м. Это может быть достигнуто использованием одной легкосплавной бурильной трубы (ЛБТ) или набором специальных антимагнитных штанг аналогичной длины. В сложных геологических условиях (большое количество шлама, обрушения стенок скважины и т.п.) следует помещать прибор в специальный контейнер из немагнитного материала.

Инклинометр состоит из защитного кожуха, тросовой головки, чувствительного элемента (ЧЭ), арретирующего механизма, таймера, блока питания.

Защитный кожух предохраняет инклинометр от механических воздействий и служит для защиты прибора от внешнего гидростатического давления столба жидкости в скважине. Кожух представляет собой трубу диаметром 42 мм из сплава Д16Т. Для увеличения скорости спуска инклинометра в скважине с вязкой промывочной жидкостью к нему присоединяется утяжелитель.

Тросовая головка является универсальным узлом, обеспечивающим крепление прибора к тросу лебедки или к колонне бурильных труб. Головка состоит из верхнего наконечника и тросовой муфты.

Магнитно-гравитационный чувствительный элемент инклинометра является датчиком зенитного угла и азимута и представляет собой две полусферы, подвешенные в подвижной рамке (рис. 5).

Нижняя полусфера (отвес) со смещенным вниз центром тяжести вращается на агатовых подпятниках в керновых опорах рамки и обеспечивает индикацию зенитного угла. В отвесе, перпендикулярно плоскости среза полусферы, установлен подпружиненный керн, на котором свободно вращается на агатовом подпятнике верхняя полусфера (картушка), являющаяся датчиком азимута, так как вклеенные внутри ее два постоянных магнита ориентируют картушку в направлении магнитного меридиана Земли. Рамка с полусферами вращается вокруг оси инклинометра на бронзовых подшипниках и, благодаря эксцентрично расположенному центру тяжести, всегда самоустанавливается в апсидальной плоскости скважины [5].

Рис. 5. Сферический чувствительный элемент автономного одноточечного инклинометра ИОК-42 ВИТРа.

1 – магниты; 2 – картушка компосная (азимутов); 3, 4 – керн, подпятник; 5 – отвес со шкалой зенитных углов; 6 – пружина; 7 – втулка; 8 – керн картушки; 9 – рамка апсидальная; 10 – стакан из оргстекла; 11 – основание (дно) картушки; 12 – подпятник

По взаимному расположению сферы отвеса и указателя, закрепленного на рамке, определяют зенитный угол, по расположению осей магнитов относительно апсидальной плоскости, нанесенной на нижней полусфере (отвесе) – азимут.

Арретирующий механизм фиксирует установившееся в точке замера состояние чувствительного элемента и обеспечивает неизменность взаиморасположения полусфер и рамки при подъеме инклинометра из скважины и при отсчете показаний.

Кинематическая схема инклинометра приведена на рис.6 [5].

Рис. 6. Схема кинематическая инклинометра ИОК-42 конструкции ВИТР.

1 – электродвигатель; 2 – муфта сцепления; 3 – винтовая пара; 4 – кулиса; 5 – уравнительная пружина; 6 – компенсационная пружина; 7 – фиксатор; 8 – подвижная вилка; 9 – измерительная сфера; 10 – фрагмент защитного колпачка

Приводом всех деталей арретирующего механизма служит электродвигатель 1 типа ИДР-6, который работает по команде, поступающей от таймера. По первой команде через муфту сцепления 2 вращение передается на винтовую пару 3, где оно преобразуется в поступательное движение. Через кулису 4 отводится толкатель, подпружиненный уравнительной пружиной 5, а компенсационная пружина б с помощью фиксатора 7 отводит вилку 8 от купола защитного колпака 10 и одновременно освобождает измерительную сферу 9. По второй команде полярность питающего напряжения меняется на обратную, и происходит арретирование измерительного узла чувствительного элемента.

Таймер – чувствительный элемент инклинометра в процессе хранения, транспортирования и спуска находится в заарретированном состоянии, что обеспечивает надежность его показаний и долговечность работы инклинометра. Временные интервалы цикла измерения обеспечиваются таймером.

Таймер позволяет устанавливать время задержки, необходимое для выполнения вспомогательных


29-04-2015, 00:29


Страницы: 1 2 3 4 5
Разделы сайта