Инженерная геология

Контрольная работа

по Инженерной геологии


Введение

Геология – комплекс наук о составе, строении, истории развития Земли, движениях земной коры и размещении в недрах Земли полезных ископаемых. Основным объектом изучения, исходя из практических задач человека, является земная кора.

Особое развитие получила такая составная часть геологии, как инженерная геология – наука, изучающая свойства горных пород (грунтов), природные геологические и техногенно - геологические (инженерно-геологические) процессы в верхних горизонтах земной коры в связи со строительной деятельностью человека.

В современных условиях инженерная геология изучает геологическую среду для целей строительства и для обеспечения её рационального использования и охраны от неблагоприятных для человека процессов и явлений. Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и эксплуатации сооружений.

На первый план выступают задачи по оценки горных пород и их массивов как среды производства инженерных работ и размещения сооружений.

В данной работе освещены геологические процессы и явления естественного (природного) происхождения. А также рассмотрены вопросы, связанные с деятельностью человека при осуществлении строительных работ.


1. Химический состав земной коры. Понятие о кларках и их величины для основных химических элементов. Причины изменения химического состава земной коры

Земная кора является наиболее хорошо изученной твердой оболочкой Земли. Название «кора» исторически связано с представлением о твердой оболочке, образовавшейся в результате остывания поверхностных слоев расплавленного огненно-жидкого вещества Земли, из которого она состояла первоначально, как это представлялось по ранее господствовавшим космогоническим гипотезам.

Земля уникальна тем, что обладает корой двух типов: континентальной и океанической. Масса земной коры равна 2,8 х 1019 тонн (из них 21% -океаническая кора и 79% - континентальная). Кора составляет 0,473% общей массы Земли.

Земная кора образована различными по составу и происхождению горными породами. Проблемами химического состава земной коры, закономерностями его изменения в пространстве и во времени занимается наука – геохимия. По данным геохимии в земной коре установлено 93 химических элементов. Большинство из них являются сложными т.е. представлены смесью различных изотопов. В земной коре известно более 360 изотопов.

Впервые попытался оценить средний химический состав земной коры в 1815 г. английский минералог В. Филлипс на примере, правда, всего лишь 10 элементов. В общем, он правильно определил количественную последовательность распространенности их и показал, что в неорганической природе резко преобладают кислород и оксиды кремния, алюминия и железа, подобно тому как в живой природе «царствует» четверка элементов-органогенов: кислород, водород, углерод и азот. То была эпоха накопления сведений. Затем наступило время обобщений. Наиболее значимыми исследованиями были труды американского геохимика Ф. Кларка. Он проанализировал данные по химическому составу большого количества минералов и горных пород: этих данных было более 5000. В 1889 г. Ф. Кларк опубликовал первую сводную таблицу среднего химического состава земной коры. Это было лишь начало. Спустя 20 лет появился гораздо более капитальный труд, в котором Ф. Кларк обобщил работы почти 1000 исследователей. В этом справочнике можно было найти данные о составе горных пород, почв и вод. Вскоре Ф Кларк с помощью геолога Г. Вашингтона произвел классический расчет среднего содержания химических элементов в условном слое земной коры толщиной 16 км. Полученные данные для наиболее распространенных элементов q тех пор изменялись в незначительной степени.

Среднее содержание отдельных элементов в земной коре называют кларками. Различают кларки весовые (массовые), атомные и объемные. Весовые кларки – это средние массовые содержания элементов, выраженные в процентах или в граммах на грамм породы. Атомные кларки выражают процентные количества числа атомов элементов. Объемные кларки показывают, какой объем в процентах занимает данный элемент.

В сумме эти числа дают около 98%. Следовательно, на долю всех остальных элементов, существующих на Земле, приходится немногим более 2%. Словом, геохимия констатирует крайне неравномерное распределение химических элементов в земной коре.

Анализ кларковых содержаний различных химических элементов позволил установить некоторые закономерности их распространённости в земной коре:

· Кларки отдельных элементов изменяются от десятков процентов до 10-8 и ниже т. к. распространенность хим. элементов в земной коре крайне неравномерна и характеризуется большими контрастами.

· Распространенность хим. элементов связана с их положением в периодической системе. Как отмечал еще Д.И. Менделеев, наиболее распространенные элементы земной коры располагаются в начале периодической системы. С увеличением порядкового номера распространённость элементов неравномерно убывает. Таким образом, в земной коре явно преобладают легкие элементы. А.Е. Фермсан для более наглядного изображения особенностей распространения хим. элементов построил полулогарифмический график (рис. 1)

Рис. 1. Логарифмы кларков химических элементов: 1-четных; 2-нечетных.

На графике хорошо видны избыточные и недостаточные, или дефицитные, хим. элементы, дающие соответственно пики вверх и вниз.

· Из двух соседних элементов периодической системы кларк четного элемента. как правило, выше кларка нечетного. При этом наиболее высокими кларками обладают элементы, раз), разности порядковых номеров которых равны или кратны 6, например О (8), Si (14).

· Главными элементами – строителями литосферы являются всего восемь химических элементов – О, Si,Al,Fe,Ca,Na,K,Mg. (см. таблицу 2). При этом ведущее место среди них принадлежит кислороду, составляющему почти половину массы литосферы и около 92% ее объема. Наиболее распространенными являются элементы с наиболее устойчивыми ядрами атомов. Дефицитность же ряды элементов, наоборот, обусловлена малой устойчивостью ядер их атомов.

Также существуют гипотезы, которые связывают закономерности распространенности хим. элементов с особенностями образования земной коры как части Земли. Предполагается, что во время возникновения земной коры, существовали такие энергетические условия, которые благоприятствовали образованию хим. элементов с энергией связи в ядре, соответствующей наиболее распространенным хим. элементам. Таким образом, распространенность хим. элементов в земной коре в настоящее время определяется двумя видами закономерностей: обусловленными свойствами ядер хим. элементов и связанными с особенностями образования земной коры как части Земли. Особенности химического состава земной коры достаточно удовлетворительно объясняются механизмом ее образования. Наиболее обоснованной и экспериментально и теоретически является гипотеза о «зонном» выплавлении вещества земной коры из мантии, разработанная А.П. Виноградовым. В основу ее экспериментального обоснования положен технологический процесс зонной плавки. Механизм этого процесса представлен на рис. 2.

Рис. 2. Моделирование процесса зонной плавки.

1-исходная смесь; 2-расплав; 3-закристаллизованное вещество; 4-нагреватель


В трубку поместили смесь соединений, обладающих различной температурой плавления. При помощи нагревателя 4 расплавим узкую зону внизу трубки и будем перемещать нагреватель вверх вдоль трубки. По мере движения нагревателя всё вещество трубки пройдет стадии плавления и последующей кристаллизации. Если такую операцию повторить неоднократно, то исходная смесь разделиться: вверху обособятся более легкоплавкие соединения, внизу – более тугоплавкие. Данные механизмы имеют место при образовании земной коры. При достижении массой Земли некоторой критической величины произошло образование ядра. Под влиянием энергии, выделяемой при распаде радиоактивных элементов, а также за счет гравитационного уплотнения, началось разогревание первоначально холодной Земли. Расплавленные массы под влиянием конвекционных токов перемещались в радиальном направлении к поверхности Земли, проплавляя при совем движении вещество мантии. Многократное повторение этого процесса обусловило закономерную дифференциацию вещества, а именно- вынос из мантии относительно легкоплавких соединений (К2 О, Na2 O, SiO2 , Al2 O3 ), накопление их в верхней оболочке Земли, которую мы называем земной корой. Таким образом, по механизму своего образования земная кора есть не что иное, как продукт дифференциации мантии. Одновременно с выплавлением легкоплавких соединений из вещества мантии происходило выделение паров и газов. В результате дегазации мантийного вещества образовалась основная масса газов и воды, имеющихся на Земле. В настоящее время можно считать установленным, что единственным источником паров воды, при конденсации которых могли образоваться огромные массы Мирового океана, было вещество мантии Земли.

Химический состав земной коры изменяется в течение геологического времени, причем эта эволюция продолжается по сей день. Основными причинами изменения химического состава являются:

· Процессы радиоактивного распада, приводящие к самопроизвольному превышению одних химически элементов в другие, более устойчивые в условиях земной коры.

· Поступление метеорного вещества в виде метеоритов и космической пыли.

· Продолжающиеся процессы дифференциации вещества Земли, приводящие к миграции химических элементов из одной геосферы в другую.

2. Дизъюнктивные нарушения залегания горных пород

Дизъюнктивные нарушения - разрывы сплошности геологических тел. Общий термин для трещин, разрывов, разломов. По происхождению дизъюнктивные нарушения делятся на нетектонические, возникающие при сокращении объёма породы, выветривании, оползнях, падении метеоритов; и тектонические, подразделяемые на разрывы без смещения (трещины) и разрывы со смещением (сбросы, взбросы, сдвиги, надвиги, шарьяжи и раздвиги). По отношению к складчатым и другим тектоническим структурам они могут быть краевыми или граничными, внутренними и сквозными; по глубине проявления - приповерхностными или глубинными, рассекающими земную кору и верхнюю мантию.

Разрывы в горных породах делятся на две большие группы. К первой группе относятся трещины , представляющие собой разрывы, перемещения по которым имеют очень незначительную величину.Во вторую группу объединяются разрывы с заметными перемещениями пород, разъединяемых разрывами. Совокупность трещин, разбивающих тот или иной участок земной коры, называется трещиноватостью. По степени проявления трещины можно разделить на три группы: открытые, закрытые и скрытые.

Открытые трещины характеризуются четко видимой полостью. В закрытых трещинах разрыв хорошо заметен невооруженным глазом, но стенки трещин оказываются сближенными до такой степени, что заметить полость по разрыву неудается.

Скрытые трещины очень тонки и при обычных наблюдениях не заметны, но их легко обнаружить при разбивании или окрашивании горных пород.

В геометрической классификации трещин в осадочных и метаморфических породах, обладающих ясно выраженной слоистостью или имеющих неясную слоистость, но четкую сланцеватую текстуру, выделяются (рис.3):

а) поперечные трещины, секущие в плане слоистость или сланцеватость по направлению падения. В разрезах поперечные трещины могут быть либо вертикальными, либо наклонными;

б) продольные трещины, параллельные линии простирания, но секущие слоистость или сланцеватость в вертикальных разрезах;

в) косые трещины, секущие слоистость или сланцеватость под углом относительно простирания и направления падения;

г) согласные трещины, ориентированные параллельно слоистости, или сланцеватости как в плане, так и в разрезах.

В массивных, а также в слоистых и сланцеватых породах нередко трещины удобнее классифицировать по углу наклона.

В таких случаях обычно выделяются следующие виды трещин: вертикальные (с углами падения от 80 до 90°), крутые (с углами падения 45 до 80°), пологие (с углами падения 10 до 45°), слабо наклоненные и горизонтальные (с углами падения от 0 до 10°).


В генетической классификации выделяются следующие типы и виды трещин:

Нетектонические трещины:

1. Первичные трещины.

2. Трещины выветривания.

3. Трещины оползней, обвалов и провалов.

4. Трещины расширения пород при разгрузке.

Тектонические трещины:

1. Трещины отрыва;

2. Трещины скола (скалывания);

3. Трещины раздавливания (сплющивания).

Образование нетектонических трещин в горных породах обусловлено изменениями внутренних свойств пород под влиянием сил, проявляющихся при экзогенных процессах на поверхности Земли или вблизи нее.

Первичные трещины развиваются в результате проявления внутренних сил, возникающих в породах при их усыхании, уплотнении, изменении объема и температуры и физико-химических превращениях.

Трещины выветривания. При выветривании порода теряет свою монолитность. Разрушение ее происходит главным образом за счет раскрытия и расширения ранее существовавших в ней трещин и образования новых — трещин выветривания.

Трещины оползней, обвалов и провалов. В описываемую группу объединены трещины, довольно разнообразные по происхождению. Они обычно часты и четко выражены, но имеют местное распространение.

Трещины расширения пород при разгрузке. Горные породы в земной коре находятся в сильно сжатом состоянии. Одна из основных сил, действующая повсеместно, вызывается тяжестью вышележащей толщи. При высвобождении пород от действия сжимающих сил, что происходит у поверхности Земли, в горных выработках, в бортах речных и овражных долин и при других подобных условиях, породы начинают выдавливаться в свободное пространство. В выработках выдавливаются боковые стенки, кровля и почва, стремящиеся заполнить все ее сечение; у поверхности Земли развиваются трещины отслаивания; в бортах речных долин и оврагов появляются характерные трещины бокового отпора.

Тектонические трещины появляются в горных породах под влиянием тектонических сил, вызываемых в земной коре эндогенными процессами.

Тектонические трещины во многом, отличаются от трещин нетектонических. Различия выражаются прежде всего в том, что эти трещины более выдержаны как по простиранию, так и по падению и ориентированы по единому плану в различных по составу породах.

Трещины отрыва имеют обычно линзовидную (иногда S – образную) форму. Трещины отрыва нередко образуют кулисообразные ряды.(рис.4).

Они образуются в результате раздвигания (приоткрывания) стенок трещин: прямого (трещины отрыва) или косого (трещины разрыва). Обычно трещины выполнены различными жильными минералами (кварц, карбонаты, рудные и др.) и / или дайками магматических пород.

Ось алгебраически максимальных главных нормальных напряжений (σ1 ) в период формирования трещин отрыва ориентирована в направлении, нормальном (перпендикулярном) их плоскостям.

Оси σ2 иσ3 залегают в плоскости трещины отрыва: в общем (простейшем) случае ось σ3 залегает в направлении простирания формирующейся трещины отрыва, а ось σ2 – совпадает с линией её падения (рис. 4). Трещины скола – по морфологии прямолинейны или слабоизвилисты и характеризуются притертыми (тесно сжатыми) краями и наличием на плоскостях трещин штрихов (борозд) скольжения. Последние свидетельствуют о перемещении стенок трещин относительно друг друга. Трещины обычно «пустые» (без выполнения) и лишь в местах изгибов при перемещении стенок трещин могут возникнуть пустые (позднее выполненные жильными минералами) небольшие по мощности полости.

Обычно одновременно формируются не менее 2 систем так называемых сопряженных во времени и пространстве (синхронных) трещин скола. В кинематическом отношении эти трещины относятся к категории взбросов (взбросо-сдвигов, сдвигов и др.).(рис.4.).

Трещины сплющивания – прямолинейные, тесно сжатые, короткие, без выполнения, на их стенках отсутствуют штрихи скольжения, что свидетельствует о том, что перемещения по плоскостям трещин сплющивания не происходили.

Ось σ3 всегда ориентирована строго перпендикулярно плоскостям трещин сплющивания, ось σ2 – по их простиранию, ось σ1 – по направлению их падения (рис. 4). Классификация разрывов со смещениями разработана на основании многолетней практики геологов. Эти разрывы делятся на шесть основных групп: сбросы, взбросы, сдвиги, раздвиги, надвиги и покровы.


Разрывы каждой из групп обладают отличительными морфологическими признаками и образуются при различных динамических и кинематических условиях. Поэтому данная классификация является как морфологической, так и генетической. Сбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения опущенных пород.

залегание геологический дрен котлован

Классификация сбросов

По углу наклона смесителя По отношению к простиранию нарушенных горных пород По отношению наклонов смесителя и нарушенных пород По направлению движения крыльев (рис.5) По взаимному расположению По отношению к времени образования нарушенных разрывами отложений
пологие сбросы ( с углом наклона до 300 ) продольные (общее простирание смесителя совпадает с простиранием нарушенных пород) согласные (наклон пород и смесителя направлен в одну и ту же сторону) прямые (висячее крыло перемещается вниз) параллельные (поверхности смесителей в плане и разрезе параллельны) Конседиментационные (возникающие и развивающиеся одновременно с накоплением осадков)
крутые ( от 300 до 800 ) косые (смеситель ориентирован под углом к простиранию пород) несогласные (породы и смеситель падают в противоположные строны) обратные (лежачее крыло перемещается вверх) радиальные (расходятся от одной точки или от определенного участка по радиусам) постседиментационные
вертикальные (угол наклона смесителя больше 800 ) поперечные (направленные вкрест простирания пород) шарнирные (крылья поворачиваются в разные стороны) перистые (образуют ветвящуюся сеть)

Взбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения приподнятых пород.

Классификация взбросов

По углу наклона смесителя По отношению к простиранию нарушенных пород По соотношению наклона пород и смесителя (рис. 6) По направлению перемещения крыльев По взаимному расположению в плане По отношению к времени образования
пологие (с углом наклона смесителя до 300 ) продольные (простирание смесителя совпадает с направлением простирания попод) согланые (наклон пород и смесителя направлен в одну и ту же сторону) прямые (висячее крыло перемещается вверх) ступенчатые Конседиментационные
крутые ( от 300 до 800 ) косые (ориентированные под углом к простиранию пород) несогласные (порода и смеситель наклонены в противополож. стороны) обратные (лежачее крыло перемещается вниз) радиальные постседиментационные

Групповые сбросы и взбросы. Сбросы и взбросы развиваются группами, охватывающими значительные территории. Широко распространены системы смещенных блоков горных пород, разделенных сбросами или взбросами, называемых грабенами и горстами. Грабенами называются структуры, образованные сбросами или взбросами, центральные части которых опущены и сложены на поверхности породами, болеемолодыми, чем породы, обнажающиеся в приподнятых краевых частях. Таким образом, грабены характеризуются погружением их центральных частей относительно периферических вдоль линий разрывов (рис.7). Различают простые и сложные грабены. Простые грабены образуются двумя сбросами или взбросами; в сложных грабенах принимает участие большое количество разрывов.


Грабены планетарного размера, образованные сбросами, получили название рифтов, а грабены, в строении которых участвуют взбросы — рампы.

Горстами называются структуры, образованные сбросами или взбросами, центральные части которых приподняты и на поверхности сложены более древними породами, чем породы, обнаженные в их краевых частях (рис. 8).

Сдвигами называются разрывы, смещения по которым происходят в горизонтальном направлении — по простиранию сместителя (рис. 9). В сдвигах различаются крылья, сместитель, угол наклона сместителя и амплитуда смещения.

По углу наклона сместителя сдвиги делятся на горизонтальные (угол наклона от 0 до 10°), пологие (угол наклона от 10 до 45°), крутые (угол наклона от 45 до 80°), вертикальные (угол


29-04-2015, 00:31


Страницы: 1 2 3 4
Разделы сайта