Геологическая работа моря

Федеральное агентство по образованию

ГОУ ВПО "Сибирский Государственный Технологический Университет"

Кафедра лесоводства

Реферат

на тему:

Геологическая работа моря

Выполнил: ст. гр. 32-5

Храмовских Ксения

Проверил: Попова Д.П.

Красноярск 2010

Содержание

1. Основные сведения о морях

2. Соленость и химический состав морских вод

3. Физические характеристики морской воды

4. Циркуляция морской воды

5. Морфология дна океанов и морей

6. Органический мир морей и океанов

7. Разрушительная и аккумулятивная деятельность моря

8. Осадконакопление

8.1 Осадконакопление в литоральной зоне

8.2 Осадконакопление на шельфах

8.3 Осадконакопление на континентальном слое и подножии

8.4 Осадконакопление в абиссальной зоне

9. Диагенез морских осадков

Список литературы


1. Основные сведения о морях

Мировой океан – непрерывная водная оболочка Земли, окружающая материки и острова и обладающая общностью солевого состава. Мировой Океан составляет 94% гидросферы и занимает 70,8% земной поверхности. Он представляет собой гигантские депрессии земной поверхности, вмещающие основной объём гидросферы – около 1,35

Море - часть Мирового Океана, обособленная сушей или возвышениями подводного рельефа и отличающаяся от открытой части океана гидрологическим, метеорологическим и климатическим режимом. Условно морями называют также некоторые открытые части океанов (Саргассово море) и крупные озёра (Каспийское море). С геологической точки зрения современные моря являются молодыми образованиями: все они определились в очертаниях, близких к современным, в палеоген-неогеновое время, и окончательно оформились в антропогене.

В океанах и морях сосредоточен огромный объем вод, который ориентировочно оценивается в 1 370 323 000 . Эти массы воды, находясь в непрерывном движении. Постоянно взаимодействуют с окружающей сушей, разрушают горные породы, слагающее берега и дно мелкоморья, перемещают и истирают продукты разрушения и откладывают их в виде осадков. В морях обитает огромное количество разнообразных животных и растений, а также моря являются приемниками всего обломочного и растворенного материала, приносимого с суши реками, ветром, ледниками.

2. Соленость и химический состав морских вод

Общая соленость морской воды определяется количеством растворенных в ней веществ и выражается в промилле (S‰). В поверхностных слоях океанов и окраинных морей соленость воды колеблется от 32 до 37 г/л растворенных солей. Такие колебания солености поверхностных океанических вод связаны с изменением климатических условий и с опресняющим влиянием стока поверхностных вод континента. На глубине соленость более или менее постоянна и в среднем равна 35‰.

Соленость вод внутриконтинентальных морей меняется в более значительных пределах. В ряде случаев она гораздо меньше солености вод океанов вследствие опресняющего воздействия речного стока.

Морская вода содержит более 40 химических элементов. Источниками солей служат речной сток и соли, поступающие в процессе вулканизма и гидротермальной деятельности, а также при подводном выветривании горных пород – гальмиролизе. Общая масса солей составляет около 49,2*т; этой массы достаточно, чтобы при испарении всех океанских вод поверхность планеты покрылась слоем слои толщиной 150 м. Наиболее распространёнными анионами и катионами в водах являются следующие (в порядке убывания): среди анионов , среди катионов . Соответственно, в пересчёте на слои наибольшее количество приходится на NaCl (около 78%), . В солевом составе морской воды преобладают хлориды. Соленый вкус воды зависит от содержания в ней хлористого натрия (NaCl), горький вкус определяет хлористый магний (), сульфаты натрия и магния.

В водах морей и океанов растворено и значительное количество газов. Преимущественно это азот, кислород и . При этом газовый состав морских вод несколько отличается от атмосферного - в морской воде, например, содержатся сероводород и метан.

Больше всего в морской воде растворено азота (10-15 мл/л), который, в силу своей химической инертности не участвует и не оказывает существенно влияния на процессы осадконакопления и биологические процессы. Его усваивают только азото-фиксирующие бактерии, способные переводить свободный азот в его соединения. Поэтому по сравнению с другими газами содержание растворенного азота (а также аргона, неона и гелия), мало изменяется с глубиной и всегда близко к насыщению.

Кислород , поступающий в воды в процессе газового обмена с атмосферой и при фотосинтезе. Является весьма подвижным и химически активным компонентом морских вод, поэтому его содержание весьма различно – от значительного до ничтожно малого; в поверхностных слоях океана его концентрация колеблется обычно от 5 до 9 мл/л. Поступление кислорода в глубинные океанические слои зависит от скорости его потребления (окисления органических компонентов, дыхания и пр.), от перемешивания вод и переноса их течениями. С увеличением глубины содержание кислорода снижается, достигая значений 3,0-0,5 мл/л в слое кислородного минимума.

Углекислый газ содержится он в морской воде в незначительных концентрациях (не более 0,5 мл/л), но суммарное содержание двуокиси углерода примерно в 60 раз превосходит её количество в атмосфере. При этом играет важнейшую роль в биологических процессах (являясь источником углерода при построении живой клетки), влияет на глобальные климатические процессы (участвуя в газовом обмене с атмосферой), определяет особенности карбонатного осадконакопления. В морской воде оксиды углерода распространены в свободном виде , в форме угольной кислоты и в форме аниона . С глубиной концентрация увеличивается, так как уменьшается его потребление при отсутствии фотосинтеза и увеличивается поступление оксида углерода при разложении органических остатков, особенно в слое кислородного минимума.

Сероводород в морской воде в значительном количестве отмечается в водоемах с затрудненным водообменном (известным примером «сероводородного заражения» служит Чёрное море). Источниками сероводорода могут служить гидротермальные воды, поступающие из глубин на дно океана, восстановление сульфатредуцирующими бактериями сульфатов при разложении мертвого органического вещества, выделение при гниении серосодержащих органических остатков. Кислород довольно быстро реагирует с сероводородом и сульфидами, окисляя их в конечном счете до сульфатов.

3. Физические характеристики морской воды

Температура воды

В верхних слоях океанов температура определяется климатическими условиями. Высокая температура воды наблюдается в экваториальных широтах, особенно у берегов. К полюсам она уменьшается до 2-3° и даже опускается ниже нуля. На больших глубинах температура меняется от 1 до +3°, а в полярных частях океанов опускается до -1,9°. Переход от верхнего слоя воды с высокой температурой к нижнему слою с низкой температурой совершается в относительно тонком слое, который называется термоклинным. Этот слой приблизительно совпадает с изотермой 8-10 и находится на глубине 300-400 м в тропиках и 500-1000 м в субтропиках. Указанная закономерность нарушается в местах различных течений.

Давление и плотность

Давление в океанах увеличивается с глубиной, нарастая на каждые 10 м столба на 1 атмосферу. Наибольшей величины оно достигает в глубоких котловинах ложа Мирового океана и особенно в глубоководных впадинах (от 800 до 1100 атмосфер, в соответствии с глубинами впадин). В условиях больших давлений и низкой температуры в глубинах океанов увеличивается растворяющая способность морской воды.

Плотность воды в Мировом океане изменяется в горизонтальном направлении и по вертикали. На поверхности океана она изменяется в соответствии с климатической зональностью. Эти изменения связаны с изменением солености (чем больше в воде растворенных солей, тем она плотнее), или изменением температуры (чем ниже температура, тем выше плотность воды). У экватора плотность воды соответствует величине около 1,02204 . По мере удаления от экватора вследствие сильного испарения и связанного с этим повышение солености плотность воды увеличивается. Максимального же значения – соответствующего 1,02750 (27,5) она достигает в высоких широтах (около 60° с. ш. и 60° ю. ш.).

4. Циркуляция морской воды

Циркуляция воды в Мировом океане имеет большое геологическое значение, определяя интенсивность разрушительного воздействия на берега и дно, разнос и дифференциацию осадочного материала по дну водоема. Циркуляция воды бывает трех видов:

а) волнения;

б) приливы и отливы;

в) течения

Волнения вызываются воздействием на водную поверхность. В этом случае частицы воды в открытом море перемещаются по замкнутым кругом орбитам в вертикальной плоскости. Волны состоят из чередующихся между собой валов и впадин. Вершины валов называются гребнями, а основания впадин – подошвами. Высота волн зависит от силы ветра. Приближаясь к берегу, волна на мелководье захватывает всю толщу воды и испытывает трение о дно. Происходит деформация волны вследствие того, что у подошвы из-за трение о дно частицы воды движутся медленней, чем на гребне. В результате увеличивается крутизна переднего склона волны, и она опрокидывается, образуя прибой. Волновые движения при сильных штормах наблюдаются не только на поверхности, но и распространяются в глубину до 50-150 м. Периодически в океанах возникают также огромные волны, называемые цунами, связанные с землетрясениями.

Приливы и отливы - периодические вертикальные колебания уровня океана или моря, являющиеся результатом изменения положений Луны и Солнца относительно Земли в совокупности с эффектами вращения Земли и особенностями данного рельефа и проявляющееся в периодическом горизонтальном смещении водных масс. Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как приливные течения, делающие предсказание приливов важным для прибрежной навигации.

Интенсивность этих явлений зависит от многих факторов, однако наиболее важным из них является степень связи водоёмов с мировым океаном. Чем более замкнут водоём, тем меньше степень проявления приливо-отливных явлений.

Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, приливные силы, порождаемые Луной, почти вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не от величины гравитационного поля, а от степени его неоднородности (градиента). При увеличении расстояния до источника поля градиент уменьшается быстрее, чем величина самого поля. Поскольку Солнце почти в 400 раз дальше от Земли, чем Луна, то и приливные силы, вызываемые солнечным притяжением, слабее.

Также, одной из причин возникновения приливов и отливов, является суточное (собственное) вращение Земли, увлекающее массы воды мирового океана, имеющего форму эллипсоида, большая ось которого не совпадает с осью вращения Земли и не участвует в её вращении вокруг этой оси. Это ведёт к тому, что в системе отсчёта, связанной с Земной поверхностью, по океану бегут по взаимно противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся, явлениям отлива, чередующихся с приливами.

Таким образом, ключевыми моментами в объяснении приливо-отливных явлений являются:

1. суточное вращение Земного шара;

2. деформация покрывающей земную поверхность водной оболочки, превращающей её в эллипсоид;

3. несовпадение его большой оси с осью вращения Земли.

Отсутствие одного из этих факторов исключает возможность появления приливов и отливов.

При объяснении причин приливов обычно внимание обращается лишь на второй из этих факторов. Но расхожее объяснение рассматриваемого явления только действием приливных сил неполно. Так, в случае совпадения упомянутых выше осей, приливно-отливные явления наблюдаться, как периодическое явление, не будут, сколь бы велики ни были приливные силы.

Приливная волна, имеющая форму упомянутого выше эллипсоида, представляет собой суперпозицию двух «двугорбых» волн, образовавшихся в результате гравитационного взаимодействия планетной пары Земля — Луна и гравитационного взаимодействия этой пары с центральным светилом — Солнцем с одной стороны. Кроме того, фактором, определяющим образование этой волны, выступают силы инерции (не путать с центробежными силами), имеющими место при обращении небесных тел вокруг общих для них центров масс.

Ежегодно повторяющийся приливо-отливный цикл остаётся неизменным вследствие точной компенсации сил притяжения между Солнцем и центром масс планетной пары и силами инерции, приложенными к этому центру.

Однако такая компенсация для водной оболочки Земли в силу её разной удалённости от Луны (и Солнца) оказывается нарушенной. На стороне, обращённой к Луне (Солнцу) преобладают силы гравитации, а на противоположной — силы инерции.

Возникающие при этом приливные силы компенсируются силами собственного гравитационного поля небесных тел.

Поскольку положение Луны и Солнца по отношению к Земле периодически меняется, меняется и интенсивность результирующих приливо-отливных явлений.

Постоянные морские течения наблюдаются на значительных площадях Мирового океана. Они связаны с различиями в плотности морской воды, зависящей от температуры и солености, с постоянно дующими ветрами (пассатами и муссонами) и другими факторами. Скорости морских течений меняются в достаточно широких пределах.

Таблица 1

Основные течения Мирового океана

Течение Океан Характеристика

Агульясово

(Игольного мыса)

Индийский Теплое
Аляскинское Тихий Теплое
Антильское Атлантический Теплое
Бенгальское Атлантический Холодное
Берингово Тихий Теплое
Бразильское Атлантический Теплое
Гвианское Атлантический Теплое
Гвинейское Атлантический Теплое
Гольфстрим Атлантический Теплое
Гренландское Северный Ледовитый Холодное
Западных Ветров Тихий, Индийский Холодное
Ирмингера Атлантический Теплое
Калифорнийское Тихий Холодное
Камчатское Тихий
Канарское Атлантический Холодное
Кромвелла Тихий
Курильское Тихий Холодное
Куросио (Японское) Тихий Теплое
Лабрадорское Атлантический Холодное
Ломоносова Атлантический Экваториальное противотечение
Мадагаскарское Индийский Теплое
Мозамбикское Индийский
Муссонное Индийский Нейтральное
Норвежское Северный Ледовитый Теплое
Нордкапское
Перуанское (Гумбольдтово) Тихий Холодное
Северо-Атлантическое Атлантический Теплое
Сомалийское Индийский Теплое

Флоридское – южная

часть Гольфстрима

Атлантический Теплое
Фолклендское Атлантический Холодное
Цусимское Тихий Теплое
Шпицбергенское Северный Ледовитый Теплое
Южное Пассатное Тихий, Индийский Теплое
Северное Пассатное Тихий Теплое
Севоро-Тихоокеанское Тихий Теплое

Морские течения перемещают во взвесях большое количество обломочного материала, не только илистого, но и мелкопесчаного, и взмучивают донные осадки.

море дно разрушительный аккумулятивный


5. Морфология дна океанов и морей

Геологическая деятельность морей и океанов зависит от многих факторов: рельефа дна, подвижности земной коры в пределах водных бассейнов и окружающей суши, солености, состава и температуры морских вод, газового режима, деятельности морских организмов, движении морской воды, климата и др.

Для начала рассмотрим морфологию дна океанов и морей. Выделяют несколько областей, отличающиеся разными условиями осадконакопления:

1. Литоральная или прибрежная область , заполняемая во время приливов и осушаемая при отливе;

2. Мелководная область (шельф или материковая отмель) – слабонаклонённая выровненная часть подводной окраины континентов, прилегающая к берегам суши и характеризующаяся общим с ней геологическим строением. Глубина шельфа обычно до 100-200 м; ширина шельфа составляет от 1-3 км до 1500 км (шельф Баренцева моря). Внешняя граница шельфа очерчена перегибом рельефа дна - бровкой шельфа.

Современные шельфы в основном сформированы в результате затопления окраин континентов при подъёме уровня Мирового океана вследствие таяния ледников, а также из-за погружений участков земной поверхности, связанных с новейшими тектоническими движениями. Шельф существовал во все геологические периоды, в одни из них резко разрастаясь в размерах (например, в юрское и меловое время), в другие, занимая небольшие площади (Пермь). Современная геологическая эпоха характеризуется умеренным развитием шельфовых морей.

3. Глубоководная или батиальная область

а) Материковый склон – один из основных элементов подводной окраины материков; он расположен между шельфом и материковым подножием. Характеризуется более крутыми уклонами поверхности по сравнению с шельфом и ложем океана (в среднем 3-, иногда до ) и значительной расчленённостью рельефа. Типичными формами рельефа являются ступени, параллельные бровке и основанию склона, а также подводные каньоны, обычно берущие начало ещё на шельфе и протягивающиеся до материкового подножия. Сейсмическими исследованиями, драгированием и глубоководным бурением установлено, что по геологическому строению материковый склон, как и шельф, представляет собой непосредственное продолжение структур, развитых на прилегающих участках материков.

б) Материковое подножие представляет собой шлейф аккумулятивных отложений, возникший у подножия материкового склона за счёт перемещения материала вниз по склону (путём мутьевых потоков, подводных оползней и обвалов) и осаждения взвеси. Глубина материкового подножия достигает 3,5 км и более. Геоморфологически оно представляет собой наклонную холмистую равнину. Аккумулятивные отложения, образующие материковое подножие, обычно наложены на ложе океана, представленное корой океанического типа, или располагаются частично на континентальной, частично на океанической коре.

4. Абиссальная область или Ложе Мирового Океана . Оно расположено на глубине 3500-6000 м и занимает приблизительно половину земной поверхности. Ложе океана хребтами, валами и возвышенностями делится на:

а) Котловины, дно которых занято абиссальными равнинами. Эти области характеризуются стабильным тектоническим режимом, низкой сейсмической активностью и равнинным рельефом, что позволяет рассматривать их как океанские плиты – талассократоны.

б) Равнины, которыми представлены талассократоны. Они бывают двух типов:

Аккумулятивные равнины имеют выровненную поверхность слабонаклонную поверхность и развиты преимущественно по периферии океанов в областях значительного поступления осадочного материала с континентов. Их формирование связано с приносом и накоплением материала суспензионными потоками, что и определяет присущие им особенности: понижение поверхности от материкового подножия в сторону океана, наличие подводных долин, градационная слоистость осадков, выровненный рельеф. Последняя особенность определяется тем, что, продвигаясь вглубь океанских котловин, осадки погребают первичный расчленённый тектонический и вулканический рельеф.

Холмистые равнины отличаются расчленённым рельефом и небольшой мощностью осадков. Эти равнины типичны для внутренних частей котловин, удалённых от берегов. Важным элементом рельефа этих равнин являются вулканические поднятия и отдельные вулканические постройки.

в) Срединно-океанические хребты, представляющие собой мощную горную систему, протягивающуюся через все океаны. Общая протяжённость срединно-океанических хребтов (СОХ) более 60000 км, ширина 200-1200 км, высота 1-3 км. В некоторых районах вершины СОХ образуют вулканические острова (Исландия). Рельеф расчленённый, формы рельефа ориентированы преимущественно параллельно протяжению хребта. Осадочный чехол маломощный, представленный карбонатными биогенными илами и вулканогенными образованиями. Возраст осадочных толщ удревняется по мере удаления от осевых частей хребта; в осевых зонах осадочный покров отсутствует или представлен современными отложениями. Области СОХ характеризуются интенсивным проявлением эндогенной активности: сейсмичностью, вулканизмом, высоким тепловым потоком.

Зоны СОХ приурочены к границам раздвижения литосферных плит, здесь протекает процесс формирования новой океанической коры за счёт поступающих мантийных расплавов.

5. Глубоководные желоба окаймляют островные дуги, развиты вдоль молодых горных сооружений края континента.


6. Органический мир морей и океанов

Море является средой обитания для разнообразных животных и растений, развитие и распределение которых зависит от многих факторов: температуры воды, ее солености, динамики водоема, давления, проникновения света, строения дна и т.


29-04-2015, 00:37


Страницы: 1 2 3
Разделы сайта