Оглавление
Введение
1. Методы исследования
1.1 Шлиховое опробование и полуколичественный минералогический анализ шлиховых проб
1.2 Рентгенофазовый метод
2. Геологический очерк Кочкарского района
2.1 Структура района и стратиграфия вмещающих пород
2.2 Магматизм и структура массивов
3. История минералогических находок
4. Топоминералогический список
5. Происхождение россыпей и их возраст
5.1 Андрее-Юльевская техногенная россыпь
5.2 Минералогическая характеристика Андрее-Юльевской россыпи
5.3 Геологическое строение техногенной россыпи по разрезу
6. Обсуждение результатов
Заключение
Использованная литература
Введение
На территории Южного Урала находится известная минералогическая провинция "Русская Бразилия". Здесь вместилось такое минералогическое разнообразие, такие необычные месторождения и проявления минералов, которые повторились на Земле только дважды: в Южной Америке - в Бразилии - и у нас, на Южном Урале.
Минералы "Русской Бразилии" отличаются особой оригинальностью и непредсказуемостью. Оригинальность объясняется своеобразным геологическим строением, порой очень сложным и спорным. Непредсказуемость заключается в недостаточной изученности недр.
На "пятачке" зауральской степи расположены более сотни проявлений и месторождений полезных ископаемых. Особое место здесь всегда занимали золотоносные россыпи. Сейчас они почти отработаны.
Для Урала район характеризуется высокой степенью геологической изученности, однако, техногенные образования данного района практически не изучены.
Андрее-Юльевская россыпь была доразведана и оконтурена с 1963 по 1972 год геологами Кочкарской ГРП Э.И. Мецнером и др. и эксплуатировалась на протяжении 25 лет. На ее территории были расположены бывшие Каменно-Павловский и Каменно-Александровский прииски. Здесь были отмечены источники розовых топазов и находки эвклазов. Андрее-Юльевское месторождение россыпного золота объединяет россыпи Еленинскую, Андреевскую, Покровскую-Ленинскую, Каменно-Санарскую. Впервые для Урала здесь обнаружены минералы манганотанталит, сурик и эвклаз (Колисниченко, Попов, 2008).
Целью данной дипломной работы является сравнительная характеристика двух минералогических объектов - минералогическое устройство естественных россыпей, составленное по литературным источникам, и устройство техногенной россыпи, составленное по своим данным.
Основные задачи работы:
1) изучение литературных данных по объекту;
2) диагностика минералов в шлиховых пробах;
3) минералогическая характеристика Андрее-Юльевской россыпи;
Дипломная работа основана на материалах, полученных в ходе прохождения преддипломной практики, работы которой были организованы ООО "Мингрупсил" и Институтом геологии и геохимии УрО РАН. В 2009 году производились поисковые и разведочные работы в пределах Андрее-Юльевского участка на кианит и золото. Основным объектом исследований являлся кианит - как основной товарный продукт техногенных образований.
Преддипломная практика проходила на территории Пластовского муниципального района Челябинской области в 18 км юго-западнее г. Пласт и в 6 км юго-восточнее п. Борисовка. Работы велись в пределах Андрее-Юльевского участка техногенных россыпей.
В основу работ положен материал, отобранный мною на лицензионном участке. Это шлиховые пробы из 27 скважин различного интервала (на глубину) - с линий № 4, 5, 6, 15, 24, 26, 28 и 5 проб с 26 профиля с глубины 0,4м.
В июне 2009 г. проведены рекогносцировочные (подготовительные) работы - маршруты методом геологического обследования со шлиховым опробованием техногенных россыпей - с целью оконтуривания образований (рис.1) и предварительного определения содержания полезных минералов в пределах лицензионной площади. Объёмы работ составили 34,9 пог. км маршрутов и 90 шлиховых проб. Общее количество выделенных участков - 11 разобщенных участков. Все участки представляют собой рекультивированные техногенные отвалы. Общая площадь выделенных участков с техногенными образованиями составляет 854881 м2 (0,85 км2 ). По результатам прямых наблюдений, находящихся в пределах отдельных участков неглубоких карьеров средняя глубина вскрытых техногенных образований составляет около 3 м. Техногенные образования представлены алевритовыми песками, песком, галькой с включениями щебня. Щебень представлен преимущественно кварцем, стяжениями гидроксидов железа, окатышами глин. Содержание щебня в техногенных песках не превышает 5%. Оконтуренные наиболее крупные по площади участки разбурены ручным шнековым бурением по сети 200 х 100 м. Объёмы бурения составляют 125 пог. м. Общее количество скважин - 53 скв., более 90% из которых вскрыли техногенные отложения на полную мощность. Средняя глубина скважин составила 2,35 пог. м, максимальная глубина бурения 4,7 м. Все скважины опробованы. Длина секции опробования составляет в среднем 1,0 м. Общее количество отобранных проб составило 222 пробы, в том числе шлиховых по поисковым маршрутам 89 проб, шлиховых по скважинам 133 пробы.
В условиях полевой минералогической лаборатории мною был проведен полуколичественный сокращенный минералогический анализ 28 шлиховых проб на кианит и золото. Проведенные минералогические исследования показали отсутствие признаков промышленного золота в исследованных пробах. Единичные знаки золота наблюдались в единичных пробах. По предварительной оценке содержание кианита в техногенных образованиях колеблется от 0,123 до 54,6 кг/м3 .
Так же на площадях развития техногенных образований были проведены геофизические работы методом ВЭЗ.
По предварительным оценкам ресурсный потенциал Андрее-Юльевского участка техногенных россыпей составляет 28-45 тыс. т, что делает этот объект перспективным на этапе внедрения нового вида минерально-сырьевых ресурсов - кианитовых концентратов (Коротеев, 2009).
Непосредственным руководителем работ в поле был Савичев А.Н. Работа выполнена в Институте минералогии УрО РАН под научным руководством Попова В.А., которому автор благодарен за поддержку и внимание к дипломной работе.
Рис.1. Расположение перспективных участков техногенных песков (на рисунке отмечены белым цветом).
1. Методы исследования
Для характеристики песка техногенных проб, взятых с Андрее-Юльевского участка применялись следующие методы исследования:
1) В полевых условиях отбирались шлиховые пробы. Отбор производился из пробуренных на участке скважин;
2) Лабораторные исследования, включающие в себя:
а) Количественный минералогический анализ шлиховых проб;
б) Изучение отдельных кристаллов оптическим методом;
в) Рентгеноструктурный анализ глин.
1.1 Шлиховое опробование и полуколичественный минералогический анализ шлиховых проб
Отбор шлиховых проб, для написания дипломной работы, проводился во время практики на Андрее-Юльевском участке техногенных образований, на котором в то время шли поисковые и начальная стадия оценочных работ.
Первый этап работ заключался в выносе главной (опорной) магистрали и поисковых линий (сеть 200м × 100м), ориентированных в крест простирания техногенных образований. Поисковые линии закладывались в местах с максимальным видимым распространением техногенных образований с помощью теодолита 2Т2А, GPS-навигатора Garmin и компаса.
Параллельно с выносом поисковых линий проходили маршруты методом геологического обследования. Во время маршрутов отбирались шлиховые пробы с глубины 30-40 см, весом в среднем 10 кг.
По данным геологических маршрутов была составлена карта фактов. По карте условно определились участки распространения техногенных песков. Затем последовал ряд маршрутов, в которых проводилась GPS-привязка точек отбора проб и залежей техногенных песков. После оконтуривания были выполнены буровые работы на глубину до 4 м шнековым способом вручную.
Пробоподготовка проводилась двумя способами:
а) В первом случае пробы просушивались, затем подвергались квартованию. Отквартованную часть пробы (в среднем 2 кг) ситовали, разделяя на фракции: >10; 10-5; 5-2,5; 2,5-1; 1-0,5; 0,5-0,25; 0, 25-0,1; - 0,1. В случае большого количества фракции - 1 мм ее подвергали сокращению, учитывая "надежную массу пробы", которая определялась по логарифмической диаграмме К.Л. Пожарицкого.
б) Во втором случае отобранные пробы подвергались обогащению на гидровашгерде. После промывки получались кианитовый концентрат и "хвосты" (более легкий материал). Высушенные концентраты ситовали на фракции: >10; 10 - 5; 5 - 2,5; 2,5 - 1; 1 - 0,5; 0,5 - 0,25; 0, 25 - 0,1; - 0,1. Для минералогического полуколичественного сокращенного анализа фракцию - 1 мм сокращали, учитывая "надежную массу пробы" (около 30 г).
После обработки проб следующим этапом работ являлся минералогический полуколичественный сокращенный анализ. Он заключался в определении, отборе и взвешивании кианита из фракций разной размерности. Крупные фракции просматривались под лупой (×2), мелкие - под бинокуляром. Данные заносились в журналы, а затем производился расчет процентного содержания кианита в каждой пробе.
Для написания данной работы мной были отобраны пробы с 27 скважин (с различных интервалов) и 5 проб с профиля № 26 (в среднем по 3 кг). После чего изучаемый материал был высушен, расквартован и расситован по фракциям >10; 10-5; 5 - 2,5; 2,5 - 1, 1 - 0,5; 0,5 - 0,25; <0,25. Масса полученных фракций от 15 до 120 г. После каждая фракция просматривалась под бинокуляром. Процентное содержание подсчитано методом "ста случайных зерен" - количественный шлиховой анализ, результаты сведены в приложении 1. Анализ шлиха проводился в ИМин УрО РАН.
1.2 Рентгенофазовый метод
Рентгенофазовый анализ проводился методом порошка на автоматизированном дифрактометре ДРОН - 2.0 (Институт минералогии УрО РАН, аналитик Т.М. Рябухина), с медным Кα - излучением, с целью идентификации глинистой составляющей. Интенсивность отражений оценивалась по высоте пиков.
Порошок для данного анализа был изготовлен из трех проб, выбранных с 26 линии - 26/04, 26/05, 26/11. Чтобы получить этот порошок был произведен опыт. С каждой пробы использовалась навеска примерно по 100 г., 6 стеклянных банок объемом по 700 мл, 3 лабораторных стекла.
Сначала по трем сосудам помещен испытуемый песок, наполовину залитый водой. Всё тщательно взмучивается и отстаивается в течение 10 минут (рис.2). (Для разделения по крупности). На дно оставшихся трех банок помещается по лабораторному стеклу, на которые сливается мелкая верхняя фракция из первых трех банок. После чего в течение двух дней масса осаждалась и налипала на стекла. После выжданного времени стекла подсушивались пару дней.
Полученный результат: 26/11 - раствор высох, масса гладкая серого цвета, прилипла к стеклу; 26/04 - высохшая масса местами образовала корки, местами гладкая прилипшая, коричнево-ржавого цвета; 26/05 - масса отошла от поверхности стекла в виде корок коричнево-бурого цвета. Полученные корочки имеют гладкую верхнюю поверхность, внутренняя - грубая с видимыми минеральными частицами.
Далее полученные корки были измельчены, расфасованы по конвертам и отправлены на рентгеноструктурный анализ.
Результаты рентгеноструктурного анализа (см. приложение 2) показали наличие в пробах каолинита, кварца, мусковита. В пробе 26/11 с пиком 13-14Ǻ - хлорит. Пикам со значением 3-4Ǻ соответствует кварц, 10Ǻ - мусковит, 7Ǻ - каолинит.
2. Геологический очерк Кочкарского района
В геоморфологическом плане Андрее-Юльевский участок располагается в пределах Зауральского пенеплена Уральского горного сооружения и приурочен к Кочкарской эрозионно-структурной депрессии.
Геологическое строение Кочкарского района представляется весьма сложным и к настоящему времени выясненным не до конца. Преимущественное развитие толщ сильно метаморфизованных пород при отсутствии в подавляющем большинстве из них фаунистических остатков, привело к тому, что до сих пор не создана вполне обоснованная и всеми принимаемая схема последовательности их формирования. Выяснение структурных взаимоотношений различных толщ между собой в сильной степени затруднено весьма плохой обнаженностью последних. В результате этого недостаточно надежно установлено и возрастное положение большинства групп интрузивных образований.
2.1 Структура района и стратиграфия вмещающих пород
В геоморфологическом плане Андрее-Юльевский участок располагается в пределах Зауральского пенеплена Уральского горного сооружения и приурочен к Кочкарской эрозионно-структурной депрессии, предположительно являющейся речной долиной мезозойского возраста. Впоследствии палеодолина наследовалась миоцен-плиоценовой речной сетью, по отношению к которой современная речная сеть является секущей.
Рыхлые образования, развитые в пределах Андрее-Юльевского участка, залегают на кристаллическом основании, сложенном метаморфизованными осадочными, вулканогенными и магматическими породами различного состава и возраста Арамильско-Сухтелинской структурно-формационной зоны, в состав которого входят: соколовская вулканогенно-осадочная (S1 l3 ), уштаганская углисто-кремнистая (S1 l3 -n) и осадочно-вулканогенная (C1 v1-2 ) толщи; а также породами метаморфического комплекса Кочкарского антиклинория, включающего семь толщ (снизу вверх): благодатская (не стратифицирована), еремкинскую (PR3 er), кучинскую (R2 kc), светлинскую (R2 sv), aлександровскую (Val), кукушкинскую (O?), карбонатную (C1 v-n) (рис.3).
Благодатская толща представлена интенсивно катаклазированными породами, сложенными в различных соотношениях диопсидом, амфиболом, полевым шпатом и карбонатом. Развита толща локально и образует изолированные тектонические блоки. Положение ее в разрезе не ясно. По-видимому, это меланжированная толща шовных зон, где смешаны породы еремкинской толщи и блоки переработанных серпентинитов.
Рис.3. Геологическое строение Кочкарской площади (По Болтыров и др, 1973; Сначев и др., 1990): 1 - осадочно-вулканогенные образования Сухтелинского антиклинория; 2 - венд, александровская толща; 3 - венд-ордовик, кукушкинская толща; 4 - верхний рифей, светлинская толща; 5 - средний рифей кучинская толща; 6 - протерозой, еремкинская толща; 7 - образования благодатской толщи; 8 - метаультрамафиты; 9 - диориты, габбро-диориты, габбро; 10 - граниты; 11 - плагио-мигматиты; 12 - мигматиты гранитные; 13 - карбонатный меланж; 14 - тектониты нерасчлененные; 15 - стратигра-фиические и интрузивные границы; 16 - тектонические нарушения. Цифры в кружочках - гранитные массивы: 1 - Ключевской; 2 - Варламовский; 3 - Котликский; 4 - Еремкинский; 5 - Борисовский; 6 - Санарский; 7 - Пластовский (Андреевский)
Еремкинская толща является самой древней в разрезе рассматриваемой территории и слагает крылья Санарской, Еремкинской, Борисовской брахиантиклинальных куполовидных структур, встречаясь в виде реликтов и "останцов" внутри последних. Мощность толщи более 1500 м.
Толща имеет двучленное строение. Нижняя ее часть сложена преимущественно метатерригенными кристаллическими сланцами, иногда мигматизированными.
Нижняя толща сложена биотитовыми, биотит-силлиманитовыми, биотит-гранатовыми гнейсами с прослоями графитистых кварцитов, биотит-куммингтонит-плагиоклазовых, биотит-плагиоклазовых, гранат-биотит-плагиоклазовых, ставролит-биотит-плагиоклазовых с кордиеритом и силлиманитом кристаллических сланцев и мраморов.
Верхняя толща сложена биотит-кварцевыми, ставролит-биотит-кварцевыми, ставролит-мусковит-кварцевыми, гранат-биотит-кварцевыми, кварц-биотит-плагиоклазовыми кристаллическими сланцами с прослоями мраморов и существенно плагиоклаз-амфиболовых пород.
Кучинская толща (рис.4) слагает мощные пачки мраморов в пределах Чуксинской, Светлинской и Андрее-Юльевской дипрессионных зон.
Рис. 4. Тектонически нарушенная контактовая зона карбонатной кучинской толщи (Кучинский карьер)
Контакты толщи обычно тектонические, резкие, с зонами срывов. Чрезвычайно характерной особенностью карбонатных пород кучинской толщи является полное отсутствие фаунистических остатков и наличие в них рубиновой минерализации. Мраморы слагают мощные однородные пачки белых, светло-серых, желтоватых, голубоватых разностей, преимущественно кальцитового состава. Мощность толщи около 700 м.
Светлинская толща развита в западной части территории и в пределах Андрее-Юльевской россыпи. Залегает непосредственно на кучинских мраморах с некоторым угловым несогласием. Контакт тектонический. В разрезе толщи выделяются две пачки пород. Нижняя, терригенно-карбонатная пачка сложена метапесчаниками, которые кверху постепенно сменяются карбонат-биотитовыми, карбонат-амфиболовыми плагиосланцами бластоалевролитовой и бластопсаммитовой структур, чередующиеся с прослоями мраморов. Кроме того, в составе пачки присутствуют прослои серых и темно-серых графитистых кварцитов, двуслюдяных и мусковитовых плагиосланцев
Верхняя, терригенная пачка представлена преимущественно биотитовыми, карбонат-биотитовыми плагиосланцами и развивающимися по ним биотит-кварц-серицитовыми метасоматитами.
Александровская толща прослеживается в западной части площади, в зоне сочленения Кочкарского антиклинория с Сухтелинским синклинорием, слагая Александровскую зону смятий. Суммарная мощность отложений толщи более 1500 м.
В составе александровской толщи принимают участие регионально метаморфизованные осадочные, вулканогенно-осадочные и вулканогенные породы. В разрезе толщи преобладают биотитовые, серицит-биотитовые, хлоритовые, биотит-актинолитовые, хлорит-актинолитовые сланцы, обычно тонко переслаивающиеся с графитистыми и слюдисто-графитистыми кварцитами.
Кукушкинская толща имеет малую площадь распространения, протягиваясь в виде узкой полосы в северо-западной части рассматриваемой территории, и представлена в основном терригенными отложениями. Суммарная мощность равна 500-700 м. В сложении кукушкинской толщи участвуют метагравелиты, метапесчаники, метаалевролиты и метапелиты. В качестве вероятных источников сноса при формировании отложений кукушкинской толщи могут рассматриваться гранитоиды борисовского комплекса. Возраст предположительно вендский.
Карбонатная толща мощностью около 400 м развита только в юго-восточной части исследованной площади в виде небольшой полосы, слагая мульдообразную синклинальную структуру, вытянутую в субмеридиональном направлении.
Состав толщи довольно однообразен. Это серые, темно-серые до черного цвета мраморизованные рифогенные известняки (рис.5).
Мраморизованные известняки содержат богатую фауну брахиопод, стеблей криноидей, фораминифер, кораллов, которые свидетельствуют о раннекаменноугольном возрасте отложений карбонатной толщи (Огородников, Сазонов, 2004).
Рис.5 Фауна в мраморизованном известняке
2.2 Магматизм и структура массивов
Кочкарский район является одним из участков восточного склона Урала, где наблюдается повышенная концентрация разновозрастных, широко варьирующих по составу гранитоидов, которые слагают массивы, различающиеся между собой по структурному положению, размерам, внутреннему строению, масштабам проявления метасоматических процессов и ряду других признаков. По имеющимся представлениям, большинство гранитных массивов Кочкарского района относят к производным герцинского магматизма, занимающим ведущее положение среди всех гранитоидов Урала. Однако части массивов приписывают более древний возраст, относя их к "генетически неясным" комплексам среднего палеозоя.
Рассмотренные интрузивные образования имеют в Кочкарском районе ограниченное распространение. Несравненно шире развиты более молодые интрузивные породы, представленные варьирующими по составу гранитоидами. Массивы этих пород группируются в четыре весьма протяженных субмеридиональных пояса (см. рис.6): Западный (Ключевский, Кукушкинский, Степнинский массивы), Главный (Поварнинский, Борисовский, Санарский, Каменно-Санарский, Чесменский массивы) и два восточных пояса - Пластовский (Коелгско-Кабанский, Пластовский, Андреевский, Чернореченский массивы) и Кособродский (Кособродский и Каменский массивы). Во всех массивах установлены жильные гранодиориты, плагиограниты, плагиогранит-порфиры, граносиенит-порфиры, редко аплиты и пегматиты. В Пластовском массиве, кроме того, отмечается присутствие альбитофиров, кварцевых порфиров, фельзитов и диабазов. Наиболее своеобразными породами в Пластовском массиве, с которыми пространственно тесно ассоциируются золото-мышьяковые рудные жилы, являются так называемые "табашки". Плагиограниты вблизи них довольно сильно изменены, биотитизированы.
В южной части района (Андреевский массив) плагиоклазовые гранитоиды контактируют с визейскими известняками. Не исключена возможность, что контакт между ними не интрузивный, а тектонический.
Определение абсолютного возраста плагиоклазовых гранитоидов сильно затруднено в связи с малым содержанием в них калиевого полевого шпата, а также
29-04-2015, 00:38