Земельно-оценочное районирование города Усть-Каменогорска

1. Земельно-оценочное районирование

1.1 Методика земельно-оценочного районирования

Принципы формирования земельно-оценочных районов в населенных пунктах определяются четырьмя признаками:

1. Однородностью:

· градостроительных характеристик (планировки, застройки, инженерно-транспортного и социального обеспечения);

· функционального назначения территории (под жилье, производство, рекреацию);

· географических признаков(пространственно-ландшафтных,инженерно-геологических и социальных);

· экологической обстановки.

2. Территориальной обособленностью (четко обозначенными границами – реками, водоразделами, тальвегами, железными дорогами, автомагистралями и т.д.).

3. Компактностью.

4. Перспективами развития (по Генплану, Плану социального развития и т.д.).

Таксонометрической основой земельно-оценочного районирования выступают, как правило, целые кварталы, или микрорайоны. Это целесообразно во всех отношениях – в Генпланах и во многих других документах необходимая кадастровая информация сведена поквартально, кварталы и микрорайоны в основном уже сформированы в соответствии с вышеперечисленными принципами, что существенно упрощает задачу их группировки и объединения в однотипные территориальные структуры (зоны). Но иногда из-за неоднородности рельефа, типа застройки, степени завершенности и перспектив развития кварталов их приходится все же делить на два и более таксонов. Земельно-оценочное районирование выполняется обычно группой специалистов по кадастру совместно с представителями архитектуры, землеустройства и служб городской (поселковой, сельской) инфраструктуры конструктивно-экспертным методом. Более высокий уровень районирования – на основе кластерного анализа с последующей экспертизой в соответствующих службах.

Границы земельно-оценочных районов определяются на крупномасштабных планах, затем в ходе обследования уточняются и корректируются в натуре, а после этого утверждаются в установленном порядке.

1.2 Источники исходной информации для земельно-оценочного районирования

В составе исходных данных необходимо иметь:

· топографические съемки в масштабах 1:10000, 1:5000, 1:2000, 1:1000, 1:500. Предпочтение следует отдавать материалам масштаба 1:2000 и крупнее, имеющим оптимальный уровень точности и информационной насыщенности;

· материалы действующих Генеральных планов и Проектов размещения строительства (наличие последних облегчает работу с Генпланами);

· материалы проектов детальной планировки, проектов застройки отдельных районов и комплексов;

· материалы специальных отраслевых схем и проектов, схем Генеральных планов промышленных узлов, размещения проектируемых промышленных предприятий и упорядочения существующей застройки в промышленных районах, комплексных схем развития всех видов пассажирского транспорта, схем и проектов отдельных видов инженерного оборудования (водоснабжения, канализации, тепло энергоснабжения и др.), проектов организации и планировки зон отдыха, зеленых зон;

· данные, представляемые отделами и управлениями местной администрации (архитектуры и градостроительства, технической инвентаризации, народного образования, здравоохранения, культуры, торговли, общественного питания и др.);

· проекты планов социального и экономического развития населенного пункта, области, региона;

· материалы (отчеты) инженерно-геологических, почвенных, геоботанических и других изыскании;

· материалы экологических обследований, экологические проекты и паспорта;

· социологические исследования, экспертизы, данные переписи населения.

В процессе районирования (зонирования) территории города Усть-Каменогорска использованы следующие материалы:

1. Топографические съемка города, выполненная Картпредприятием №6 в 1985 году, М -1:2000 и топосъемка М – 1:500, выполненная ВостокГИИЗом в восьмидесятые годы. На этой плановой на основе определены:

- уровень развития социальной инфраструктуры;

- развитие инженерных и транспортных сетей;

- плотность жилой, общественной и производственно-складской застройки;

- площади земель общего пользования, сельскохозяйственного использования и т.д.

2.Материалы Генплана, проектов детальной планировки и застройки отдельных районов города, выполненные в разные годы проектным институтом «Востокгражданпроект» (г. Усть-Каменогорск).

3.Материалы «Проекта размещения жилищно-гражданского строительства на 1986–90 годы на период до 2000 года», ГПИ «Востокоблсельпроект», г. Усть-Каменогорск, 1986 г.

Границы земельно-оценочных районов и их площади определены на топооснове М 1:10000. Площади районов (кроме XIV) для расчета оценочных показателей приняты в границах застройки.

1.3 Характеристика XVIIIa земельно-оценочного района города Усть-Каменогорска

Данный участок с северо-западной и северо-восточной стороны граничит с посёлком Миновное. С юго-восточной стороны проходит автомобильная дорога. С юго-западной стороны граничит с дачным кооперативом Ягодка. С западной стороны на автомобильной дороге находится автозаправка. Площадь данного участка 220,68 га.


2. Методика комплексной оценки игу территории

2.1 Основные факторы инженерно-геодезических условий

районирование экологический земельный геодезический

Современный уровень развития техники позволяет использовать под застройку практически любые территории, но освоение сложных в инженерно-геологическом отношении участков связано с увеличением затрат, поэтому степень влияния инженерно-геологических условий (ИГУ) на ценность земель можно определить путем прямого сопоставления затрат на инженерную подготовку и застройку территорий. Сущность кадастровой оценки ИГУ в населенных пунктах заключается в определении пригодности территорий для жилищно-гражданского строительства.

В лаборатории «Кадастр» ВКГТУ разработано два методических подхода сравнительной оценки инженерно-геологических условий для городского кадастра – комплексный (аналитический) и градостроительный (экспертный).

Первый метод базируется на основе тщательного анализа рельефа, физико-механических свойств грунтов, гидрогеологических условий и геологических процессов с целью выявления факторов и оценки их влияния (в стоимостном выражении) на конструктивные решения подземной части зданий и сооружений – выбор конкретных типов и конструкций фундаментов и т.д. В качестве исходного материала при этом используются непосредственные результаты инженерных изысканий.

Второй метод упрощенный – основан на использовании укрупненных нормативов, полученных эмпирически – путем экспертных оценок серии проектов планировки и застройки населенных пунктов. Эти нормативы могут быть уточнены, при необходимости, для городов со специфическими условиями.

Для кадастровой оценки земель населенных пунктов основные факторы ИГУ представляют четыре группы показателей:

· типы и формы рельефа (геоморфология);

· физико-механические свойства грунтов (геология);

· состояние и состав грунтовых вод (гидрогеология);

· внутренние и внешние проявления эволюции земной поверхности (геологические процессы).

Геоморфология – наука о рельефе земной поверхности, происхождении и возрасте ее элементов, которые характеризуются морфометрическими (количественными), морфогенетическими (происхождение и возраст типов пород) и морфогенетическими (формы рельефа) показателями различных типов грунта.

Оценка влияния элементов рельефа на физико-геологические процессы и явления, прогнозирование динамики развития форм рельефа в естественных условиях выполняется по результатам специальных наблюдений на основе статистического анализа или расчетов устойчивости склонов и зависит от типов пород, их свойств и состоянии.

Основной задачей оценки земель в системе городского кадастра по геоморфологическому признаку является определение влияния рельефа на формирование ИГУ района и степени воздействия отдельных элементов на условие строительства.

Существует множество классификаций рельефа. Требованиям кадастровых задач наилучшим образом отвечает обобщенная классификация А.И. Спиридонова и М.Ф. Скрибнова.

Наиболее благоприятный рельеф местности по градостроительным нормам с уклоном до 10%. Склоны большей крутизны приходится выполаживать, террасировать, укреплять подпорными стенками.


Таблица 1 – Классификация рельефа по А.И. Спиридонову и М.Ф. Скрибнову

Основные

категории

рельефа

Морфографические

категории рельефа

Класс рельефа Морфометрические категории
по относительной высоте (глубине расчленения), м по густоте расчленения

по углам

наклона

поверхности

равнинный (0о-2 о) плоский I

очень мелкий 0–1

0–1

мелкий 1–2,5

средний 2,5–5

крупный 5–7,5

очень крупный 7,5–10

свыше 500 м 0 – 0,25
равнинный II 0,5
волнистый III 2
холмистый(2 о -7 о) увалистый IV 10–100 2
холмистый V 5–500 4
сильно холмистый VI 7

гористый

(7 о -24 о)

предгорный VII 100–500 12
гористый VIII - 18
горный IX 24
высотный (24 о и более) высокогорный X свыше 500 30
высотный XI - 37
островершинный XII более 45

районирование экологический земельный геодезический

В разделе геология исследуются геологические данные, необходимые для оценки территории: распространение, условия залегания, генезис происхождения, мощность, возраст, инженерно-геологические свойства горных пород. Классификация грунтов: скальные, полускальные, нескальные (связные и несвязные). Результаты анализа этих данных должны количественно отражать взаимодействие среды с основаниями зданий и сооружений. Основой оценки инженерно-геологических условий территории являются сведения по механике грунтов.

Гидрогеология изучения являются водоносные горизонты земной коры и проявления подземных вод на поверхности. Классифицируют подземные воды по типу (аэрации, поровые, карстовые, трещинные), по условиям залегания (верховодки, грунтовые, артезианские). Из них наибольший интерес для кадастровой оценки представляют грунтовые воды. На их формирование влияют непосредственно: атмосфера, климат, рельеф, поверхностные воды, почвенный и растительный покров, состав водовмещающих пород и пород зоны аэрации. Горизонт грунтовых вод – это первый от поверхности земли уровень, постоянный во времени, регионально выдержанный, имеющий единую гидравлическую поверхность, давление на которую, как правило, равно атмосферному. Верховодки – это грунтовые воды непостоянные во времени и развитые на небольших площадях.

Режим подземных вод – это изменение их уровня (глубины залегания), расхода, температуры и химического состава во времени под влиянием естественных или искусственных (антропогенных) факторов. Сведения о глубине залегания, мощности водоносных горизонтов, геологических условиях и другие данные о режиме и динамике подземных вод отражают карты гидроизогипс и разрезы по сезонам.

Химический состав подземных вод зависит от естественных условий (литологического состава водовмещающих пород, климата, рельефа, давления, глубины залегания) и антропогенного воздействия (загрязнения почв и атмосферы производственными и бытовыми выбросами, стоками).

Оценку качества воды производят по двум критериям – по степени пригодности для питьевого и хозяйственного использования и по характеру воздействия на инженерные сооружения, в частности, бетонные и металлические. Эти данные можно определить по специальным гидрохимическим картам, на которых отражаются основные параметры качества воды – общая минерализация, содержание химических элементов, водородный показатель, жесткость, агрессивность и др.

По степени общей минерализации воды подразделяют на пресные, слабосоленые, солоноватые, соленные и рассолы. При содержании солей более 2–3 г./л, вода считается непригодной для питьевого водоснабжения. Оценка качества химического состава воды для питьевых целей производится по концентрации ионов.

Водородный показатель, рН – это концентрация (точнее, активность) ионов водорода (в г-ион/л), он служит количественной характеристикой кислотности растворов, которая оказывает влияние на развитие (скорость) многих химических и биохимических процессов. Раствор считается кислым при рН < 07, щелочным – рН > 7, нейтральным – рН = 7.

Жесткость воды определяется наличием соединений кальция и магния – частично может быть устранена при кипячении.

Агрессивные свойства воды по отношению к железу проявляются в виде коррозии, а по отношению к бетону – при нарушении углекислотного равновесия, происходит растворение, выщелачивание свободной кристаллической извести из цемента и разложение других составных его частей.

Основным расчетным показателем динамики подземных вод является коэффициент фильтрации, который характеризует водопроницаемость грунтов. Коэффициент фильтрации зависит от пористости или степени уплотнения грунтов, а также от напора воды и уклона потока грунтовых вод, именуемого гидравлическим градиентом. Коэффициент фильтрации – это скорость просачивания воды вглубь грунтов м/сутки.

Инженерно-геологическим процессами называют изменения, происходящие в геологической среде вследствие проявления природных сил и антропогенного воздействия, в частности строящихся и эксплуатируемых сооружений. Целями изучения этих процессов является:

· учет наличия, распространения и активности их проявления, контроль ситуации, выяснение возможности ее изменения или приспособления к ней при строительстве;

· прогноз развития процессов и возникновения их основных очагов и форм;

· обоснование и выбор мероприятий по предупреждению или предотвращению негативных последствий развития инженерно-геологических процессов.

Задачи региональной оценки территорий:

· выявление генетических типов инженерно-геологических процессов;

· оценка степени и масштаба проявления негативных процессов.

2.2 Систематизация и обработка исходных данных

Количество показателей ИГУ, диапазон и глубина исследования степени их достоверности, надежности, точности зависят от поставленных задач. Обычный набор задач для первого этапа изысканий под строительство: сравнение и оценка вариантов размещения объектов в районе строительства; составление схем генерального плана; определение объемов и стоимости работ; оценка ИГУ применительно к различным строительным и хозяйственным целям. Эти задачи решаются на основе региональных инженерно-геологических исследований. На втором этапе решаются чисто специфические задачи на уже выбранной строительной площадке.

Результаты первого этапа изысканий для кадастровых целей могут быть представлены с достаточной точностью на плановой основе в масштабах 1:10000 и 1:25 000.

Банк земельно-кадастровых данных ИГУ следует формировать по «узловым точкам» – на пересечениях линий координатной сетки определённой плотности и заданной кратности. Исходя из средней степени изменчивости наиболее характерных признаков физического состояния земель, оптимальными можно считать размеры сетки 500*500 м, соответственно, значения координат «узловых точек» – кратными 500.

В особо сложных случаях плотность можно принять 100*100, но при этом, следует иметь в виду, что по большинству показателей точность и надежность дополнительной информации, полученной вследствие уплотнения сетки, не повысятся. Это обусловлено тем, что большинство показателей определяются путем интерполяции (экстраполяции) значений между исходными точками (наблюдений, отбора проб, скважин и т.д.) [1]

2.3 Геоморфологические показатели

Вокруг каждой «узловой точки» координатной сетки в пределах квадрата заданной кратности между крайним горизонталями по кратчайшему и наибольшему расстояниям между ними вычисляется средний уклон местности. В соответствии с ним определяется морфометрическая характеристика рельефа.

2.4 Геологические показатели

В рабочую таблицу для каждой точки квадрата по разрезам, описаниям скважин (шурфов) выписываются колонки литологических слоев пород с указанием отметок поверхности земли, количества и мощности слоев, углов наклона и глубины залегания каждого слоя. Глубина колонки устанавливается до максимальной для этого района глубины котлованы или заглубления свай при строительстве сооружений: в среднем 10 – 15 м или до коренных (подстилающих) пород. Если места отбора проб не совпадают с вершинами квадратов координатной сетки, то для этих точек параметры литологических слоев определяют путём интерполяции или экстраполяции.

По каждому литологическому слою определяют степени выветрелости, трещиноватости, влажности, просадочности, показатели уплотнения и трения по фактическим или нормативным значениям.

2.5 Гидрогеологические показатели

По гидрогеологической карте района для каждой вершины квадрата координатной сетки определяют наличие подземных вод, их простирание, динамику напора, глубину залегания, коэффициент фильтрации, изотропность химического состава и агрессивность. Данные по подземным водам фиксируют до глубины 10–12 м.

2.6 Показатели геологических процессов

По материалам изысканий или специальных исследований определяют для каждой «узловойточки»наличиеипараметрыкарстовых и оползневых явлений, заболачивания и подтопления берегов, обрывов, оврагов и искусственных выемок, эрозионных процессов и сейсмической активности.

2.7 Определение категории сложности ИГУ

В основе предлагаемой методики заключена идея оценки земельных участков по совокупности факторов, которые должны быть представлены минимальным числом интегративных показателей.

Каждый показатель представлен в натуральном выражении и в виде коэффициентов сложности. Эти коэффициенты, отражают соотношение натуральных показателей первой категории к последующим. Для показателей, не имеющих формализованных параметров состояния динамики или качества, коэффициенты установлены эмпирическим путем: I категория – 1,0; II– 0,8; III– 0,6 и IV– 0,2. К таким показателям относятся мощность литологического слоя, характер залегания подземных вод, их агрессивность и геологические процессы. Эти коэффициенты являются весовыми параметрами категории сложности (таблица 4).

В оценке ИГУ важнейшим элементом исследований является определение удельного веса влияния каждого факторного признака и в целом структурных групп факторов на значение совокупного комплексного показателя. Веса групп факторных признаков – Кф, а также веса показателей сложности ИГУ внутри групп – Кn и значения всех оценочных показателей по каждой категории определены экспертным путем.

Таблица 4 – Весовые коэффициенты показателей и факторов ИГУ

Факторы Показатели Коэффициенты Веса
Факторов Кф Показателей Кn
Геоморфология Vp Kv 0,1 1
Геология N KN 0,42 0,08
V3 K3 0,09
m Km <0,01
KB KB <0,01
Б KT <0,01
G KG 0,09
E KE 0,12
Rc KR 0,12
П 0,5
Гидрогеология ПФ Кпф 0,33 <0,01
КФ Кф 0,1
Хс Кх <0,01
А КА 0,2
L КL 0,7
Геологические ГП Кгп 0,15 0,55
процессы С Кс 0,45

2.8 Расчет комплексных показателей оценки ИГУ

Значение комплексного показателя в пределах фактора определяются по формуле:

Рф = ΣKk * Kn(1)

где: Kn– весовой коэффициент каждого показателя сложности ИГУ в группе.

Kк – значения всех оценочных показателей по каждой категории

Интегративный показатель сложности ИГУ в «узловой точке» Робщ вычисляется по формуле:

Робщ = ΣРф * Кф (2)

где: Кф – весовой коэффициент группы факторных признаков.

Все расчеты сводятся в рабочую таблицу расчета комплексного показателя инженерно-геологических условий 18а-го земельно-оценочного района г. Усть-Каменогорска (Приложение А).

Расчеты для 1 строки:

Р1 = КV

где: КV– это значение показателя сложности ИГУ взятое из приложения А;

Аналогично ведутся вычисления для Р2, Р3, Р4.

Р2 = KN*0,08 + K3*0,09 + KG*0,09 + KE*0,12 + KR*0,12 + KПр*0,5

Р3 = KG*0,1 + KA*0, 2 + KL*0,7

Р4 = KГП*0,55 + KС*0, 45

Робщ = Р1*0,1 + Р2*0,42 + Рз*0,33 + Р4*0,15

Результаты вычислений сведены в таблицу (Приложение Д)

Комплексные показатели оценки ИГУ условно подразделяются на четыре оценочные группы по категориям сложности.

Таблица 5 – Классификация комплексных показателей по степени сложности ИГУ

Комплексные показатели 1,00–0,92 0,92–0,78 0,78–0,46 0,46–0
Степени сложности I(простая) II(средней сложности) III(сложная) IV (весьма сложная)

Пользуясь данными таблицы 5 полученные комплексные показатели переводят в степени сложности ИГУ и выписывают на карту земельно-оценочного района в соответствии с точками координатной сетки (Приложение Б).

Показатели степеней сложности ИГУ земельно-оценочного района определяются как средневзвешенное по ареалам (S;) или удельным весам площадей.

В данном курсовом проекте 2 степени сложности (средней сложности и сложная) инженерно-геологических условий

Комплексные показатели увеличения затрат на освоение и эксплуатацию земельных участков по районам выражаются по формуле:

ZИГУ = S(Si*Pобщ.i.ср.)/S(3)

где S– общая площадь земельно-оценочного района.

S=220,68 га

Таким образом, XVIIIaземельно-оценочный район можно отнести к средней степени инженерно-геологических условий.

Чем меньше затраты на освоение и содержание земельных участков, тем они рентабельнее и стало быть дороже, поэтому коэффициент влияния ИГУ на цену земель Кигу выражается отношением:

Кигу= ΖИГУ i / ΖИГУ max(4)

где: ZИГУ – показатель увеличения затрат на освоение и эксплуатацию земельных участков во i-томземельно-оценочном районе;

ZИГУmax– максимальное значение показателя увеличения затрат.

Результаты исследований представляются в виде сводной матрицы исходных значений инженерно-геологического состояния территории в «узловых точках», а также оценочных показателей на момент производства работ. Показатели ИГУ в промежутках между «точками», при необходимости, определяются методом линейного интерполирования. Кроме того, по результатам оценки была составлена карта ИГУ комплексной оценки территории по совокупности факторов (Приложение Б). ВIX земельно-оценочном районе преобладает средней сложности и сложная категории.

Результаты оценки ИГУ, выраженные коэффициентами, и карты по существу отражают степень пригодности территории земельно-оценочных районов для промышленного и гражданского строительства, поэтому они могут быть использованы в системе управления земельными ресурсами, и для планирования организации территории, а также различных видов проектирования, в особенности на стадии предпроектной подготовки [1].


3. Оценка экологической обстановки

3.1 Оценка загрязнения атмосферы

Источники исходной информации для оценки загрязнения атмосферного воздуха.

В составе исходных данных должны быть представлены:

· карта города и его окрестностей с обозначенными на ней источниками выбросов загрязняющих веществ в атмосферу;

·экологические паспорта предприятий загрязнителей атмосферного воздуха;

·краткая характеристика природных условий, определяющих распространение загрязняющих веществ в атмосфере;

· перечень веществ, оказывающих наибольшее влияние на загрязнение территорий;

· характеристика степени опасности загрязняющих веществ;

·ретроспективный анализ загрязнении атмосферного воздуха, тенденции и научно-технический прогноз развития;

· cведения о влиянии загрязнения воздуха на здоровье населения и окружающую среду.

Одним из основных жизненно важных элементов окружающей среды, подлежащих качественной оценке в системе городского кадастра является атмосферный воздух. В данном случае качественная оценка


29-04-2015, 00:44


Страницы: 1 2
Разделы сайта