Нефть в пластовых условиях

Введение

Данная курсовая работа представляет собой краткое обобщение и анализ современных знаний по теме «Нефть в пластовых условиях».

Основная цель работы – описать условия залегания и свойства нефти в пластовых условиях.

При написании работы использован материал из следующих изданий:

Искендеров М.А. «Нефтепромысловая геология и разработка нефтяных месторождений» (1955),Жданов М.А. «Нефтепромысловая геология и подсчет запасов нефти и газа» (1981) и др.

Основная часть работы состоит из разделов: условия залегания и свойства газа, нефти и воды в пластовых условиях; физические свойства нефти; свойства нефти в пластовых условиях; нефтенасыщенность пласта. В основной части использовано 4 рисунка.

Объём курсовой работы 26 страниц. В конце приведено графическое приложение в формате А3 «Геоизотермы западной части Ново-Грозненского месторождения».

1. Условия залегания и свойства газа, нефти и воды в пластовых условиях

В процессе осадконакопления при формировании залежи нефти в результате региональной (первичной) миграции пористое пространство породы оказывается заполненным диффузно рассеянными нефтью, газом и водой. В дальнейшем при внутрирезервуарной (вторичной) миграции внутри пористой породы жидкости и газ распределяются в соответствии с их плотностями: газ занимает повышенную часть пласта (образуя газовую шапку), ниже располагается нефть, а еще ниже вода. Однако полного гравитационного разделения газа, нефти и воды не происходит и часть воды (так называемой связанной воды) остается в газовой и нефтяной зонах пласта, удерживаясь там силами поверхностного натяжения в субкапиллярных порах.

Нефть и газ по химическому составу являются очень сложными углеводородами, находящимися при повышенных пластовом давлении и температуре, что отличает их свойства в пластовых условиях от свойств на поверхности земли.

Состояние смеси углеводородов на поверхности зависит от состава углеводородов, добываемых из скважины, и от давления и температуры, при которых они извлекаются. Углеводороды, остающиеся в пласте на любой стадии его истощения, претерпевают физические изменения, так как пластовое давление по мере отбора из пласта нефти или газа уменьшается. Поэтому возникает необходимость изучения физических свойств углеводородов, находящихся в природных условиях, и особенно изменений этих свойств в зависимости от давления и температуры.

Знание физических закономерностей изменения свойств углеводородов дает возможность оценить количество полученных газов и жидкости, приведенных к стандартным условиям, при извлечении их на поверхность.

Изучение указанных выше данных позволяет выяснить физические явления, происходящие в недрах, оценить промышленные запасы нефти и газа в пласте и наметить мероприятия по наиболее полному извлечению из недр нефти и газа.

При изучении физических свойств пластовых жидкостей и газов следует иметь в виду также и то, что движение их в пористой среде при эксплуатации происходит в сложных условиях, определяемых не только высокими давлением и температурой, но и физико-химическими свойствами жидкостей, газов и самой пористой среды. Из-за сложности состава природных углеводородных смесей очень часто приходится пользоваться эмпирическими данными, полученными в результате лабораторных исследований.

Для исследования физических свойств природных жидкостей и газов в первую очередь необходимо установить состояние и характер изменения простых однокомпонентных систем. Однокомпонентные углеводороды в чистом виде не существуют в природе и могут быть получены только после тщательной переработки углеводородных систем. Однако ввиду того, что физические свойства однокомпонентных углеводородов и характер их изменения в зависимости от давления и температуры качественно такие же, как и более сложных систем, для их изучения можно пользоваться основными определениями и принципами термодинамики и физической химии, относящимися к индивидуальным углеводородам.

Углеводородные системы, как и другие системы, могут быть гомогенными и гетерогенными.

В гомогенной системе все ее части имеют одинаковые физические свойства. Для гетерогенной системы физические и химические свойства в разных точках различны.

Гетерогенные системы состоят из фаз, каждая из которых представляет собой определенную часть системы, являющуюся гомогенной и физически отделенной от других фаз отчетливыми границами (например, гетерогенная система: лед, вода и водяной пар).

В нефтегазовом пласте существует также гетерогенная система: газ, нефть, вода. Поэтому кроме свойств углеводородов необходимо изучение также свойств воды, которая занимает часть объема пласта, создает энергию для добычи нефти, а также извлекается вместе с нефтью и газом.

Ниже будут рассмотрены лишь основные свойства нефти в поверхностных и пластовых условиях, которые необходимо знать при проектировании, анализе разработки нефтяных залежей, а также при подсчете запасов нефти.

2. Физические свойства нефти

Нефть представляет собой в основном смесь углеводородов различного состава, хотя в ней обычно преобладают углеводороды метанового (парафинового) или нафтенового рядов. В меньших количествах встречаются углеводороды ароматического ряда и др.

По физическому состоянию углеводороды от СН4 до С4 Н10 – газы, от С5 Н12 до C16 H34 – жидкости и от C17 H36 до С35 Н72 – твердые, называемые парафинами.

Углеводороды метанового ряда (Сп Н2п+2 ) преобладают в нефтях месторождений Грозненского района, Челекена, Ферганской долины, Южной Бухары и др.

Углеводороды нафтенового ряда (Cn H2 n ) являются основной составной частью нефтей Азербайджана, Западной Украины и т.п.

Товарные качества нефти определяются содержанием легких и тяжелых углеводородов, составом жидких и твердых углеводородов и наличием примесей.

Нефть характеризуется фракционным составом. Обычно выделяют следующие фракции: до 100 °С – бензин первого сорта, до 110 °С – бензин специальный, до 135 °С – бензин второго сорта, до 265 °С – керосин (сорт «метеор»), до 270 °С – керосин обыкновенный; остаток относится к мазуту, из которого при подогреве (под вакуумом) до 400–420 °С отбирают масляные фракции.

По содержанию фракций различают нефти легкие (бензиновые, масляные) и тяжелые (топливные, асфальтовые и др.). Среднее содержание бензиновых фракций (кипящих до 200 °С) в нефтях пермских и каменноугольных отложений восточных районов СССР колеблется в пределах 15–25%, в нефтях девонских отложений – 25–30%.

Качество нефти зависит также от содержания в ней парафина, серы, смолистых веществ и т.п. По содержанию парафина различают беспарафинистые нефти – парафина не более 1%, слабопарафинистые-1–2% и парафинистые – более 2%. Наибольшим содержанием парафина отличаются нефти месторождений Мангышлака (20–28%), Западной Украины (до 12%), Грозненского района (до 7%), Челекена и Средней Азии (до 4–5%), Сураханского (2–4%), Озек-Суатского (до 25%) и др.

Сера в нефтях встречается как свободная, так и в виде соединений (сульфиды, меркаптаны и др.); общее ее содержание достигает 1 и иногда 4,5%. Различают малосернистые нефти – серы не более 0,5% и сернистые – более 0,5%. Особенно высоким содержанием серы отличаются нефти месторождений Башкирии и Татарстане, южной части Пермской и Куйбышевской областей. В нефтях Ишимбайского, Туймазинского, Бугурусланского, Ромашкинского и Ставропольского месторождений она составляет от 1,5 до 3%. В нефтях месторождений, расположенных севернее и южнее Татарии и Башкирии, количество серы заметно меньше (0,6–0,9%), и совсем мало ее содержится в нефтях Саратовской и Волгоградской областей (0,3–0,4%). Незначительное ее количество отмечается и в нефтях ряда месторождений западной части Куйбышевской области, Западной Сибири.

По содержанию смол различают малосмолистые нефти с содержанием смол менее 8%, смолистые – 8–28% и сильносмолистые – более 28%.

В нефти в небольших количествах встречаются хлор, иод, фосфор, мышьяк, калий, натрий, кальций, магний и т.п.

Из кислородных соединений наибольшее значение имеют нафтеновые и жирные кислоты, асфальтены и смолы.

Бензин и керосин характеризуются величиной октанового числа. Это число показывает детонационную стойкость топлива (детонация – преждевременный взрыв части топлива, приводящий к снижению мощности двигателя и к преждевременному его износу и разрушению). Октановое число определяется содержанием изооктана (в об.%) в такой стандартной смеси его с гептаном, которая по своей детонационной стойкости равноценна испытуемому топливу. Чем выше октановое число топлива, тем меньшую детонацию оно вызывает в моторе. Бензин с октановым числом 72 и более называется высокооктановым.

Плотность нефтей определяют при температуре +20 °С. Она колеблется в пределах 0,730–1,06. Плотность азербайджанских нефтей 0,78–0,93, грозненских 0,84–0,87. В восточных районах РФ она изменяется в среднем от 0,852 до 0,899. Плотность калифорнийских нефтей 0,78–0,93, а некоторых мексиканских нефтей около 1,05.

В США плотность нефти определяют в градусах АНИ (Американский нефтяной институт) при 60 °F (около 15,5 0 С); плотность воды в этой системе равна 10° АНИ. Пересчетная формула от градусов АНИ к системе, принятой в России, следующая:

откуда 10° АНИ соответствуют p15 15 = 1.

Вязкость или внутреннее трение – в СИ динамическая вязкость нефти намеряется в Па∙с, кинематическая – в м2 /с.

Условная вязкость в градусах Энглера (°ВУ) представляет собой отношение времени истечения из вискозиметра 200 см3 испытуемой жидкости к «водному числу» – времени истечения 200 см3 дистиллированной воды при +20 °С, обычно равному 50–52 с.

Вязкость нефтейколеблется в широких пределах изависит от пластового давления, температуры ирастворенного в нефти газа. Зависимость вязкости от давления весьма незначительная; с увеличением температуры вязкость нефти уменьшается; с увеличением количества растворенного газа она заметно уменьшается.

Вязкость нефти играет большую роль при движении ее по пласту. От величины вязкости нефти и от ее соотношения с вязкостью воды зависят динамика обводнения залежи иусловия эффективной добычи нефти.

Поверхностное натяжение жидкости заключается в противодействии нормальным силам, приложенным к этой поверхности и стремящимся изменить ее форму. Единицы измерения Н/м или Дж/м2 .

Поверхностное натяжение существует на границе раздела любых двух фаз. В среднем его величина на границе нефти с воздухом составляет 2,5–3,5 Н/м2 , а с водой – 7,2–7,6 Н/м2 (поверхностное натяжение вод нефтяных месторождений вследствие их минерализации достигает 7,9 Н/м2 ).

Это свойство имеет существенное значение при движении нефти в пористой среде. В самом деле, поровое пространство нефтяных пластов в значительной части представлено капиллярными трубками переменного сечения, поэтому частицы нефти при своем движении по этим капиллярам должны менять форму иповерхность. При этом на преодоление сил поверхностного натяжения расходуется часть пластовой энергии: чем больше величина поверхностного натяжения, тем больше будет расходоваться пластовой энергии на его преодоление.

Обычно, чем больше плотность нефти, тем больше ее поверхностное натяжение; с ростом пластового давления его величина также несколько возрастает; с увеличением количества растворенного газа и повышением температуры поверхностное натяжение нефти уменьшается.

3. Свойства нефти в пластовых условиях

Движение нефти в пласте зависит от пластовых условий. К ним относятся высокие давления, повышенные температуры, молекулярно-поверхностные явления, наличие растворенного газа в нефти и др. Для пластовой нефти характерно содержание значительного количества растворенного газа, который в процессе снижения пластового давления выделяется, изменяя ее свойства (нефть становится более вязкой, уменьшается ее объем).

Таким образом, пластовая нефть представляет собой смесь жидких и газообразных углеводородов, которые могут находиться либо в однофазном состоянии (нефть с растворенным газом), либо в двухфазном (газированная нефть и свободный газ).

Отбор проб нефти

Изучение свойств пластовых нефтей начинают с отбора их глубинных проб. От качества отобранных проб будет зависеть точность определяемых характеристик. Пробу отбирают из работающей скважины, для чего в скважину обычно до глубины средних отверстий фильтра опускают глубинный пробоотборник.

Для того чтобы решить, из каких скважин изучаемого объекта следует отбирать пробы, прежде всего необходимо ознакомиться с геологическим строением объекта, подлежащего изучению. Если объект несложного строения, например, горизонтально залегающий пласт без экранирующих нарушений, то выбор скважин не представляет особого труда. В этом случае для отбора проб может быть выбрано несколько скважин, равномерно расположенных по площади и отстоящих друг от друга на значительном расстоянии. Число скважин будет зависеть от размеров объекта.

В случае сложного геологического строения (крутопадающие пласты, дизъюнктивные нарушения внутри объекта и т.п.) выбор скважин для отбора проб представляет довольно трудную задачу. Необходимо по минимальному числу проб получить полное представление о характере пластовой нефти.

При сложном геологическом строении объекта возможно непостоянство по пласту некоторых характеристик нефти, вызванное различиями в температуре и давлении в отдельных его частях. В поднятых частях пласта температура будет ниже, чем в опущенных. Кроме того, при наличии впласте экранирующих нарушений может оказаться, что пласт, выделенный как одна гидродинамическая система, содержит разные по составу нефти, т.е. в пределах отдельных блоков скопилась нефть, мигрировавшая из разных мест. Различия в свойствах нефти могут быть также следствием отсутствия установившегося термодинамического равновесия в пласте между жидкими и газообразными углеводородами. В таких случаях газонасыщенность нефти в пределах залежи характеризуется непостоянством и убывает вниз по падению пласта.

Следовательно, при выборе скважин для отбора глубинных проб необходимо руководствоваться геологическим строением месторождения и данными промысловых испытаний скважин. Чем детальнее изучен объект, тем легче выбрать скважины. Привести какую-либо универсальную схему невозможно, и вопрос выбора скважин для отбора проб в каждом конкретном случае должен решаться особо.

Следующим важным моментом при выборе скважин является их техническое состояние. Намечаемая для отбора проб скважина должна отвечать требованиям безопасной работы при спуске глубинных приборов. Для этого она должна обладать исправными, легко закрывающимися задвижками. Фонтанные трубы должны свободно пропускать глубинный пробоотборник, для чего диаметр должен быть не менее 50,8 мм; желательно, чтобы трубы были спущены как можно ближе к перфорированной части колонны. Часто вследствие сильных вмятин на трубах спуск пробоотборника на всю глубину скважин невозможен, поэтому трубы по всей длине не должны иметь вмятин и резких изгибов и, кроме того, низ колонны фонтанных труб должен быть оборудован упором.

Если окажется, что фонтанные трубы спущены не на всю глубину скважины или на концы труб не приварены упоры, то спуск пробоотборника ниже фонтанной колонны не рекомендуется во избежание его обрыва при подъеме.

Перед спуском в скважину пробоотборника следует проверить шаблоном техническое состояние труб.

В случае парафинистой нефти, когда в верхней части колонны отлагается парафин, перед спуском пробоотборника в скважину необходимо очистить трубы от него.

Желательно, чтобы перед отбором глубинной пробы было проведено исследование работы скважины на различных штуцерах, замерены забойное и пластовые давления, температура. Эти данные помогут выбрать тот режим работы скважины, при котором забойное давление будет выше давления насыщения и, следовательно, на забое не будет свободного (не растворенного в нефти) газа. Если окажется, что к моменту отбора глубинной пробы скважина работала с давлением ниже давления насыщения, то, прежде чем приступить к отбору пробы, скважину следует перевести на тот режим работы, при котором предполагается произвести отбор проб.

Следует иметь в виду, что время, необходимое для восстановления пластового газового фактора, зависит от величины депрессии вокруг скважины, от пористости и проницаемости пласта, от вязкости нефти и степени ее недонасыщенности, поэтому не всегда оказывается возможным дождаться восстановления пластового газового фактора. Однако для новых скважин, вскрывших еще не затронутые эксплуатацией части пласта и проработавших сравнительно короткое время, это обязательное условие.

Необходимо также определить содержание воды в нефти. Это дает возможность правильно интерпретировать результаты исследования. Желательно, чтобы скважина, из которой предполагается производить отбор проб, была безводной.

После тщательного изучения скважины можно приступить непосредственно к отбору глубинных проб.

После подъема пробоотборника из скважины пробу следует перевести в контейнер – стальной сосуд, предназначенный для длительного хранения и транспортировки пробы под давлением. Длительное храпение пробы в пробоотборнике не рекомендуется.

Свойства пластовых нефтей

Экспериментальный метод исследования нефти при пластовых температуре и давлении на основе изучения глубинных проб пластовой нефти, отобранных с забоя скважин глубинным пробоотборником, дает наиболее, полное представление о характере пластовой нефти.

В результате исследования глубинных проб получают следующие характеристики пластовой нефти:

1) давление насыщения,

2) растворимость газа в нефти,

3) объемный коэффициент,

4) сжимаемость,

5) плотность,

6) вязкость.

Свойства пластовых нефтей можно определять также путем применения так называемого расчетного метода.

Этот метод основан на использовании эмпирических графиков, построенных по большому количеству экспериментальных данных и связывающих характеристики дегазированной и пластовой нефти. Несмотря на получаемую при этом сравнительно низкую точность, расчетный метод довольно широко распространен вследствие исключительной простоты и удобства.

Для использования расчетного метода необходимо иметь данные о плотности сепарированной нефти, газовом факторе (соответствующие растворимости газа в нефти при данном пластовом давлении), пластовой температуре (в приложении приведён пример – геоизотерма месторождения) и пластовом давлении.

Давление насыщения характеризует степень насыщенности нефти газом. Под давлением насыщения пластовой нефти понимается давление, при котором начинается выделение из нефти первых пузырьков растворенного газа. Если пластовое давление становится ниже давления насыщения, то из нефти начинает выделяться растворенный в ней газ. При давлении насыщения, равном пластовому давлению, пластовая нефть насыщена газом. Нефть, находящаяся в пласте при давлении выше давления насыщения, недонасыщена газом.

Величина давления насыщения зависит от свойств нефти и газа. Более тяжелые нефти имеют высокие давления насыщения; в них растворяется меньше газа, чем в легких нефтях. Более тяжелые нефтяные газы по сравнению с более легкими растворяются в нефти при меньших давлениях. При наличии в углеводородном газе азота давление насыщения резко повышается.

К началу разработки залежь нефти характеризуется величиной начального давления насыщения; при снижении пластового давления из нефти выделяется газ и устанавливается новое, текущее давление насыщения.

Величина давления насыщения зависит от температуры пласта; для нефтей, содержащих в составе растворенного газа заметное количество азота, зависимость давления насыщения от температуры незначительная.

Изучение давления насыщения и его соотношений с пластовым давлением имеет большое значение при проектировании разработки залежи нефти. При значительном превышении пластового давления над давлением насыщения создаются благоприятные условия для эффективной ее разработки.

Давление насыщения обычно определяют по пробам пластовой нефти; при этом одновременно с давлением насыщения определяют количество газа, растворенного в нефти


29-04-2015, 00:45


Страницы: 1 2
Разделы сайта