Антропогенная динамика ландшафта

Реферат по предмету: Ландшафтоведение.

Тема: «Антропогенная динамика ландшафта. Устойчивость ландшафта».

Содержание

1. Понятие динамики и устойчивости

2. Сукцессия ландшафта

3. История и направления антропогенизации ландшафтной сферы Земли

Список использованных источников.


1. Понятие динамики и устойчивости

Под состоянием природной геосистемы обычно понимают определенный тип ее структуры и функционирования, ограниченный некоторым отрезком времени. Отсюда логически следует, что динамика природной геосистемы это смена ее состояний. Ясно, что антропогенная динамика геосистем обусловлена хозяйственной (в широком понимании - антропогенной) нагрузкой на нее: ускоренной эрозией и дефляцией почв, вторичным засолением почв на орошаемых участках в аридных регионах, дигрессией пастбищ, вырубкой лесов, заболачиванием и подтоплением побережий водохранилищ, опустыниванием, евтрофикацией (загрязнением) природной среды.

В целом динамика природных режимов и восстановительных сукцессии - это виды стабилизирующей динамики ландшафта, остальные виды динамики ведут лишь к необратимому качественному изменению или даже разрушению ландшафта. Под устойчивостью ландшафта понимается его способность сохранять свою структуру и функционирование в режиме нормальных природных ритмов и в обстановке изменяющейся внешней среды или под воздействием антропогенных нагрузок.

Устойчивость ландшафтной сферы, как и в целом геосистемы, подчиняется принципу относительности, в частности:

1)к одним нагрузкам ландшафты устойчивы, к другим нет;

2)разным геосистемам (ландшафтам в том числе) свойственны разные потенциалы устойчивости к одним и тем же воздействиям. Характерный пример этого: верхние звенья степной катены лучше переносят загрязнения, чем нижние, а нижние лучше верхних переносят эрозию.

Установлено также, что относительно малая устойчивость к возмущающим внешним воздействиям характерна для многих реликтовых геосистем (например, для лесных массивов в степях). Такие реликты находятся в известной дисгармонии с окружающей их внешней средой. Неустойчивы и геосистемы на ранних стадиях своего формирования, например, только начинающие зарастать пески. В сравнении с такими системами намного более устойчивы климаксовые геосистемы.

Устойчивость ландшафтов во многом зависит от того, какой вид динамики у них преобладает. В частности, если господствует стабилизирующая динамика, устойчивость значительно повышается. Однако она сильно падает в тех случаях, когда динамический тренд (направление нагрузок) усугубляется наложением однонаправленных антропогенных нагрузок.

В этих случаях и происходит так называемый ландшафтный резонанс - явление усиления внутренних колебаний геосистемы внешними колебаниями. Весьма известный пример здесь - опустынивание Сахели (области на севере Африки), которое из-за засухи усилилось также многолетним перевыпасом скота.

Различаются три основных механизма ландшафтной устойчивости.

1.Устойчивость инерционная - это такой механизм устойчивости, когда отсутствуют реакции на нагрузки до каких-то определенных пороговых значений. Такой устойчивостью обладают преимущественно ландшафты в срединных частях природных зон, так называемые квазистационарные ландшафты.

2.Устойчивость резистентная (упругая). Она свойственна главным образом системам с мощным растительным покровом, потому что именно растительный покров прежде всего обеспечивает восстановительную сукцессию геосистемы.

3.Устойчивость адаптивная, или устойчивость приспособления (толерантности, терпимости, пластичности). Сущность этого механизма устойчивости в том, что геосистемы (и, следовательно, ландшафты) способны чутко приспосабливаться и к меняющимся условиям внешней среды, и к антропогенным нагрузкам, но в определенных рамках терпимости (толерантности).

Адаптивная, т. е. пластичная, устойчивость определяется широтой диапазона между максимальным и минимальным значением факторов, в пределах которого ландшафт способен сохранять характерные для него структурные и функциональные особенности. Это положение соотносится с известным законом толерантности В. Шелфорда.

Отметим также, что чем менее разнообразна горизонтальная структура ландшафта, тем более слабы ее механизмы компенсации и, следовательно, тем слабее ее устойчивость. Очевидно и то, что локальные антропогенные нагрузки чаще всего не сказываются или почти не сказываются на крупных региональных иерархических единицах: провинциях, зонах и т.п.

2. Сукцессия ландшафта

Сукцессия ландшафта (от лат. successio - преемственность, наследование) - термин первоначально был применен в геоботанике для обозначения смены временных, нестабильных растительных сообществ при формировании или разрушении устойчивого фитоценоза. Причины - как саморазвитие биогеоценозов, так и внешние природные и антропогенные факторы (рубки, пожары, вытаптывание и др.).

Представление о сукцессиях было внесено К. Троллем в сферу ландшафтоведения для обозначения последовательных смен состояний в рамках одного инварианта. Это нашло свое выражение при анализе динамической модели эпифации - серийных рядов фаций, последовательно связанных с коренной фацией. Это одна из пространственных форм отражения именно сукцессии ландшафта. Под сукцессией ландшафта можно понимать также и процесс смены его переменных состояний в направлении к коренному или близкого к нему динамическому состоянию.

Мы уже достаточно знаем о том, что под воздействием климатического и геолого-геоморфологического факторов внешней среды происходит эволюция природных геосистем. Помимо факторов внешней среды не менее важным для эволюции природных геосистем является фактор саморазвития, или фактор спонтанного развития. Любая сложная система, в том числе и геосистема, какой бы открытой по отношению к внешней среде она ни была, обладает способностью к саморазвитию, обладает спонтанностью. Примеры: развитие ландшафтной оболочки, зарастание пресного водоема. Направленность саморазвития геосистем, историческая неповторимость их природы - чрезвычайно важное свойство геосистем. В ходе спонтанного развития природная геосистема проходит ряд последовательных стадий. Самые важные из них:

1) зарождение геосистемы. Обычно происходит возникновение новой литогенной основы;

2) становление геосистемы. Появляются почва и растительный покров, в первую очередь, - пионерные группировки однолетних экс-плерентных растений (сорняки, «шакалы» растительного мира). Они готовят экотоп для более требовательных многолетних растений;

3) зрелость геосистемы. Появляются многолетние растения. Они образуют устойчивые фитоценозы. Система находится в состоянии максимального равновесия, или климакса (термин введен Клеменсом). Примеры климаксовых систем: смешанные леса на моренной равнине, суглинках с дерновыми почвами, богато разнотравные степи на черноземах;

4) отмирание геосистемы. При этом на ее месте зарождается новая геосистема. Например, на месте озера появляется низинное болото, на месте низинного болота - верховое, на месте верхового болота - лес.

Последовательная закономерная смена стадий в процессе зарождения и формирования природной геосистемы и называется сукцессией ландшафта.

Если геосистема нарушена чем-то и стремится к равновесию, то в этом случае говорят о восстановительной сукцессии.

3. История и направления антропогенизации ландшафтной сферы Земли

Многолетние исследования современных ландшафтов привели к выводу, что природно-антропогенные ландшафты - это исторические образования. Многие из них пережили и продолжают переживать ныне длительную эволюцию, причем не только природную, но и хозяйственную. В их структуре сосредоточены элементы былых эпох хозяйственного использования. Можно наметить основные этапы эволюции ландшафтной оболочки Земли.

1. Добиосферный (абитический) - весь криптозой.

2. Биосферный этап - фанерозой. Он характеризуется развитием биоты, трансформацией атмосферного воздуха под ее воздействием, а также всех природных вод, литогенной основы ландшафтов.

3. Формирование почвенного покрова. В самом конце биосферного этапа устанавливается появление человека умелого.

4. Антропогенный этап начался 40 тысяч лет назад, с появлением Ноmо sapiens (человека разумного). Он стал активно пользоваться огнем, орудиями труда, заниматься охотой. При этом сильно сократилось количество многих млекопитающих, что в итоге привело к наступлению экологического кризиса мезолита. Выходом из этого кризиса был переход от присваивающего способа потребления к производящему, что в ранней истории человечества обозначается как неолитическая революция. Зародилось земледелие и животноводство.

5. Техносферный этап датируется серединой XIX - концом XX столетия. В начале XXI века отчетливо обозначен переход к постиндустриальному обществу.

6. Ноосферный этап лишь начинается. Ноосфера, в понимании В.И. Вернадского, - это такое возможное в будущем состояние ландшафтной сферы, когда ее функционирование и развитие целенаправленно регулируется Разумом человечества для сохранения человеческой цивилизации. Концепция устойчивого развития была рассмотрена и принята на одном из последних географических конгрессов в Рио-де-Жанейро в 1992 г. Суть концепции - в разумном сотворчестве человека и природы с целью создания системы культурных ландшафтов как структурных важнейших элементов ноосферы. Путем построения ноосферы, таким образом, и является упомянутая концепция устойчивого развитии. В постиндустриальном мировом сообществе приоритеты должны быть отданы уже не технике, а экологии, в том числе ландшафтной.

Антропогенизация ландшафтной сферы Земли происходит не только в результате целенаправленной хозяйственной деятельности, но и в результате возможных, дестабилизирующих природную среду процессов - так называемых цепных реакций.

Перечислим виды антропогенного воздействия, рассматриваемые ныне в качестве основных практически для всей земной суши:

-ускоренная эрозия почв и антропогенная денудация;

-обеслесение суши;

-антропогенное опустынивание;

-антропогенная евтрофикация (загрязнение) природной среды;

-урбанизация Земли;

-создание парникового эффекта;

-металлизация ландшафтной сферы;

-нарушение естественных биохимических круговоротов веществ и энергии в природно-антропогенных ландшафтах;

-антропогенное изменение информативности ландшафтов вследствие их унификации.

Рассмотрим подробнее один из видов антропогенного воздействия - механизм и масштабность металлизации ландшафтной сферы. В качестве примера использованы данные о трансформации вод в промышленном ландшафте - характерный пример нарушения биогеохимических круговоротов веществ и энергии в природно-антропогенных ландшафтах.

А.И. Перельман один из первых обосновал понятие о горнопромышленных ландшафтах, полностью увязав их образование, в рамках исторической геохимии ландшафтов, с техногенезом. Если, по его данным (1975, 1989), проследить этапы исторической геохимии, то техногенез, несомненно, - самый молодой по времени возникновения. И хотя, по некоторым сведениям, начало эпохи техногенеза отстоит от наших дней на 8000 лет, его очевидное, притом глобальное развитие особенно активно и мощно проявлено ныне.

Современный горнопромышленный Урал может считаться эталонной областью образования и развития горнопромышленных ландшафтов, с продолжительностью их формирования примерно 300 лет;

наиболее активно в последние 70 - 80 лет - советская и постсоветская эпохи. В горнопромышленных ландшафтах прежде всего ощутимы изменения гидрогеологического режима (особенно в областях многолетнего водоотлива и формирования депрессионных зон при разработке и осушении месторождений, в большинстве случаев уже достигших границ соответствующих областей фильтрации), во многих случаях произошло заболачивание, изменились условия водоснабжения в связи со сменой уровней подземных вод и т.д.

Естественно, что глубокая трансформация оказалась неизбежной для геохимической и гидрогеохимической обстановки, притом, что последняя является особенно чутким, контрастным и достоверным индикатором таких изменений. На Урале, гумидной области с полноводными реками и множеством озер, есть много примеров сильного угнетения и даже полного уничтожения растительности в районах действующих или уже прекративших хозяйственное функционирование рудников, шахт, разрезов, металлургических предприятий. В ряде случаев сформировались характерные для этих условий сернокислые горнопромышленные техногенные ландшафты, на многих участках которых уже выявлены своеобразные техногенные залежи минерального сырья, в том числе и такие, которые можно отнести и к категории техногенных гидроминеральных ресурсов.

Наиболее типичными чертами гидрогеохимии этих ландшафтов, сформировавшимися в преимущественно сернокислых условиях, являются: сильнокислые (рН 1,7-3) рудничные воды (до 98 - 99 эквивалентных % SO4 2- ), свободная серная кислота, малая, почти незаметная концентрация Сl (в целом малохлоридные системы), высокие содержания Fе3+ как главной среди форм Fе и продуктов его окисления, высокие концентрации Zn, Си, А1, Мn, Со, Сd и заметные, часто высокие концентрации (до 0,01; 0,1 и даже и мг/дм3 ) ультрамалых (Hf и W и др.) и редкоземельных (La, Ce, Nd, Sm, Eu, Gd, Ho, Tm, Yb и др.) элементов, формирование многих систем с Н2 S (табл. 1).

Конкретная картина необратимой гидрогеохимической трансформации горнопромышленных ландшафтов наиболее ощутима в пределах сернокислых полей при длительной разработке медноколчеданных залежей, отчасти в ландшафтах также глубоко трансформированных и длительно отрабатывавшихся (ныне уже не эксплуатируемых) сильносульфидизированных угольных полей (Кизеловский бассейн).

Таблица 1. Ассоциации элементов в водах горнопромышленных ландшафтов меднорудных месторождений

Накопление

элементов

Водосбросы месторождений
Учалинского Ганского Дегтярского Ломовского Лёвихи Красногвардейского
> 100 000

Zn, Сu,

Cd

Си,Zn,

Сd, Со

- - - Сu
100 000-10 000

Fе, Zn

Cо, Мn

Со, Sс,

Zn, Cd

Сu, Zn Сu Сu, Zn Сu
10 000-1 000

Мn, Со,

Рb. Sb

Мn, Ni,

Y

Fе, Zn

Сu, Zn,

Cd, Yb

Сu, Zn,

Cd, Fe

Сu, Zn, Fе,

Со, As

1 000-100 Рb, Ni Рb, Rb

Ni, Со,

Fe, Mn,

Al, Pb,

Y, Yb

Ni, Co,

Al, Pb,

Zn, Sn,

Yb

Zn, Cd,

Mn, Fe

100- 10 Li, As Rb Сu

Pb, As,

Ti

Mn, Sc,

Yb

Pb, Ni, As,

Rb

10-1 - Sb, Li Fe, Cu Sn

Pb, Al,

As

Al, Sr, Ti,

As, Li

Sr, Cs

As, Sr,

Cs

Sr, Li,

Rb, Cs

Sr, Li,

Rb, Cs

Сs

Менее подверженными гидрогеохимической трансформации оказались воды железорудных месторождений Урала, хотя время их трансформации соизмеримо, а во многом и превышает таковое при промышленном освоении меднорудных объектов (табл. 2). Общие черты их гидрогеохимии: в целом cлабоминерализованные (от менее 0,5 - редко до 2-3 г/дм3 ), гидрокарбонатные кальциевые и/или магниево-кальциевые, нейтральные или слабокислые воды (7 < рН > 3).

Рассматривая возможность оценки степени техногенной мобилизации обширной металлоносной «нагрузки» рудничных и шахтных вод как основного результата их геохимического преобразования, мы различали прежде всего наиболее сильно измененные водосбросы залежей медноколчеданной группы (и их разливов в пределах близрасположенных от источников рассеяния частях ландшафтов), а также обширной группы месторождений минерального сырья, воды которых преобразованы техногенезом менее контрастно или почти не трансформированы. Это воды железорудных, никелевых, бокситовых и иных месторождений.

Таблица 2. Ассоциации элементов в водах горнопромышленных ландшафтов железорудных месторождений

Накопление

элементов Кн

Водосбросы месторождений
Естюнинского Валуевcкого Гороблагодатского Северо-Песчанского Первомайского Воронцовского
100- 10 -

Sr, МО,

Cs

Pb, Sr, F Рb Сu, Рb -
10- 1

Мл, V,

Cи, Co,

Sr, Ti, Ga

Zn, Си,

Mn

Mn, Cи,

Sr, As

Mn, Zn, V,

Cr, Sr, As

Mn, V, Cr,

Zn, As, Sr

Mn, Ni,

Cu, Zn, Sr

1-0,1 Zn, Ni

Fc, Zn,

Ni, Ti

Mn, Fe,

Zn, As

Mn, Ni, Mo

Ni, Ti,

Zn, Mo

Mn, Ti, Cr,

Zn, Sr

<0,1

Pb, Cd,

Rb, Li, Cs

Pb, Cd,

Li, Rb,

Cs,

Си, Cd,

Rb, Li, Cs

Zn, Cd, Li,

Rb, Cs

Мо, Cd,

Mg, Rb,

Li, Cs

Pb, Cd, Li,

Rb, Cs

Важен вопрос выбора исходных уровней сравнения концентраций элементов, так как «фоновый» уровень и содержания, и начальной трансформации установить ныне невозможно (за исключением тех чрезвычайно редких случаев, когда удалось сохранить данные о «естественном» составе вод и других компонентов среды). Для сравнения уровней накопления химических элементов нами использовались данные об их средних содержаниях в подземных водах зоны гипергенеза (Шварцев, 1978, 1998), в пресных речных, подземных и озёрных водах (Zуkа, 1972), концентрациях в морских водах (Хорн, 1972). Последнее обосновано и для тяжелых металлов (Cu, Zn, Fe, Mn, AL, Ni, Co, Cd), и для редких элементов (РЗ и др.) при невозможности обоснования «кларковых» концентраций в пресных водах. Это позволяет предложить коэффициент общего техногенного накопления Кн (что уже определяет «аномальность» самих концентраций) как отношение выявленных содержаний элементов Сi к принятому «эталону» или «кларковым» их содержаниям в водах (мг/дм3 или мкг/дм3 ).

В ландшафтах над меднорудными залежами перечень загрязнителей наиболее обширен, но и более однообразен, характерны и четкие ассоциации элементов. Уровни их накопления внутри ассоциаций иногда заметно варьируются, а вариации величин Кн наблюдаются и для элементов с максимальной (наиболее типоморфны в рассматриваемых антропогенных ландшафтах), и с более низкой интенсивностью накопления (Sr, Ai, Ti и др.). Изменения в концентрациях и уровнях накопления элементов характеризуют индивидуальные антропогенно-геохимические особенности рассматриваемых объектов и близко расположенных ландшафтов (табл. 3).

Таблица 3. Ассоциации элементов в ландшафтах горнообогатительных производств

Кн Хвосто-хранилище аглофабрики Шламо-накопитель Стоки обогащения Стоки серно-кислотного производства Сбросы цементационных установок
> 10 000 -

Fe, F, Cd,

As, Zn

- Аs Fe, Zn
10 000-1 000 -

Cu, Zn, Cd,

As

-

Cu, Zn, Pb, Cd,

Sb

Cu, Zn
1 000-100 -

Fe, Cu, Co,

Sb

Zn, Cu, Co Co, Ti -
100-10 Sr

Mn, Ni, Co,

V, Pb, Zn,

Sr, F

Mn. Ni, Co,

V, Ti, Sr

Mn, Ni, V,

Mo, Sr

Сu
10-1

Ni, V, Cu,

Mo, Sr

Cr, Li, Mo

Sr, Li, Mn,

Ti

- -
1-0,1 Mn, Zn, Ti - Li Li -
<0,1

Pb, Mn, Li,

Rb, Cs

Мо, Сs

Pb, Rb, Cs,

Mn, Zn, Ni

Rb, Cs

Показательны различия в градациях величин Кн для разных месторождений: на сернокислых ландшафтах меднорудных залежей 10бК н ≤0,1 (большей частью сульфидные воды), на ландшафтах железорудных залежей 10 ≤ Кн ≤ 0,1, для ассоциаций сточных вод вблизи горнообогатительных производств 104КИ ≤0,1. Следовательно, уже сам порядок градаций Кн определяет разную контрастность накопления элементов в разных ландшафтах и в известной мере уровень техногенной «нагрузки» на ландшафт (см. табл. 1, 2, 3).

Оценка уровней накопления элементов в сульфидных водах не полна без сравнения Кн с минерализацией растворов. Последняя достигает 110 г/дм3 и зависит преимущественно от SO4 2- а часто от содержаний Fe, He, Zn, Cи, Мn в ущерб Na, Са, Мg. Нами предложен коэффициент «удельного накопления» Км - характеристика дифференцированного накопления в зависимости от величины минерального остатка или минерализации раствора ( М, г/дм3 ), то есть отношения Кн к М (почти аналог известного коэффициента водной миграции; Перельман, 1947, 1975). По данным о величинах Км можно судить о накоплении элементов, дифференцированном в зависимости от минерализации вод и об интенсивности их водной миграции (табл. 4).

Таблица 4. Миграция элементов в водах горнопромышленных ландшафтов меднорудных залежей

Градации условного

накопления, Км

Элементы Интенсивность миграции
>105 Сu, Zn, ТR Чрезвычайно высокая
105 -104 Fe, Cu, Zn, Cd, TR Весьма высокая
104 - 103 Fe, Cu, Zn, Cd, Co, TR Высокая
103 -102 Fe, Al, Mn, Cu, Zn, Cd, Co, Ni, TR Средняя
102 - 10 Fe, Al, Mn, Cu, Zn, Ni, Co, Cd, TR Незначительная
10-1

Fe, Al, Mn, Cu, Zn, Ni, Co, Cd,

Sb, La, Ce

Малая
1-0,1

Fe, Al, Mn, Ni, Co, Sb, La, Mn,

La

Крайне малая
0,1-0,01 Fe, Mn, La Нижтожная

По этому показателю максимальная «нагрузка» выявляется на ландшафты у меднорудных объектов (приотвальные и обрушенные зоны, карьеры), на участки скопления промышленных стоков. Она меньше в ландшафтах у железорудных залежей. По величинам Км отмечается и некоторая специализация рассмотренных геохимических ландшафтов.

Максимальные Км для Ga, Cs, Sr, Fвыявлены в водах (и ландшафтах) железорудных, Fe, Zn, Cu, Al, Sn - для рудничных вод (и ландшафтов) меднорудных месторождений, а наивысшие накопления и самая интенсивная миграция Ni, Co. Mn, V, Sc, ряда РЗ наблюдались в приотвальных, карьерных и водах зон обрушения тех же месторождений. В них же весьма отчетливы спектры Pb, Mo, Cd, Ti, Sb. Можно, следовательно, отметить формирование явной геохимической специализации антропогенных горнопромышленных ландшафтов и контрастность многих элементов в их металлоносных ассоциациях.

Последний признак и является, видимо, показателем специфики объектов, а по положению элементов в ассоциации и уровням их накопления можно судить о мощности источника загрязнения и его длительности.

Градации накопления и миграции элементов (см. табл. 1 - 4) в известной мере условны. Однако они подчеркивают несомненно дифференцированную и контрастную (в


29-04-2015, 00:48


Страницы: 1 2
Разделы сайта