Разработка методов и средств поверки и калибровки геодезических приборов для измерения превышений

На правах рукописи

РАЗРАБОТКА МЕТОДОВ И СРЕДСТВ ПОВЕРКИ И КАЛИБРОВКИ ГЕОДЕЗИЧЕСКИХ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ ПРЕВЫШЕНИЙ

Специальность 25.00.32 – Геодезия

Автореферат диссертации на соискание ученой степени

кандидата технических наук

Общая характеристика работы

Актуальность темы диссертации. В настоящее время в области геодезических измерений происходит переход от оптических методов измерений к оптико-электронным. При этом развитие и совершенствование оптико-электронных приборов для измерения превышений, повышение их точности, надежности и степени автоматизации приводят к необходимости создания новых методов и средств контроля их метрологических характеристик. Это, в свою очередь, требует разработки новых технологий и средств их метрологической поверки, калибровки и сертификации. Этой актуальной задаче и посвящена данная диссертационная работа.

В общем разработка современных эталонных средств в метрологии направлена на обеспечение единства измерений, сокращение времени испытаний, повышение их точности и надежности, оперативную обработку полученных данных.

Методология поверок и калибровок высокоточных приборов для измерения превышений тахеометрами и нивелирами регламентируется рядом специально разработанных стандартов, устанавливающих основные метрологические характеристики. Эта документация рассчитана в основном для оптических приборов, поверочные схемы оптико-электронных устройств не достаточно разработаны.

В настоящее время в геодезической метрологии следует выделить постановку задачи разработки и исследований новых методов и средств поверки и калибровки современных оптико-электронных и цифровых приборов для измерения превышений, реализованных виде соответствующих поверочных стендов.

Основными требованиями к техническим и метрологическим характеристикам стендов для поверки и калибровки оптико-электронных (цифровых) геодезических приборов для измерения превышений являются:

- многофункциональность стендового оборудования;

- уменьшение времени поверки и калибровки геодезического прибора;

- автоматизация процесса измерений;

- использование альтернативных эталонных мер – кодовых и растровых датчиков, лазерных интерферометров, жезлов и концевых мер длины;

- увеличение точности считывания с кодовых, растровых инкрементальных датчиков угла или длины.

Следовательно, задачи создания универсального стендового оборудования для метрологических исследований современных оптико-электронных приборов для измерения превышений являются на данный момент актуальными.

Целью работы является разработка методов и средств поверки и калибровки геодезических приборов для измерения превышений.

Для достижения поставленной цели сформулированы и решены следующие научные задачи:

1. Проведен анализ существующих методов и средств исследования, поверки и калибровки приборов для измерения превышений.

2. Разработаны методы и средства определения основных метрологических характеристик геодезических приборов для измерения превышений.

3. Разработаны и исследованы соответствующие теме диссертации стенды универсального метрологического комплекса УМК-М.

Объект исследования - методы и используемые в них эталонные средства калибровки геодезических приборов для измерения превышений на примере линейного растрового измерительного преобразователя, лазерного интерферометра, коллиматоров, концевых мер длины и инварных жезлов.

Методика исследования. Выполненные в диссертационной работе исследования основаны на анализе опубликованных данных, выполнении теоретических и практических исследований и экспериментальной проверке достоверности этих результатов.

Научная новизна работы заключается в следующем:

1. Разработан эталонный стенд и технология исследования короткопериодической погрешности измерения вертикальных углов геодезическими приборами.

2. Разработана и исследована методика поверки и калибровки системы лазерного трекера для измерения превышений и вертикальных углов на эталонном стенде.

3. Разработаны и реализованы методы поверки и калибровки системы "нивелир – рейка": а) при помощи измерительного преобразователя; б) на оптико-механическом компараторе; в) с использованием концевых мер длины.

Практическая значимость работы:

1. Разработанные методы и стенды использованы в поверочной установке МИИГАиК УМК-М, на которую от Федерального Агентства по техническому регулированию и метрологии получен Сертификат об утверждении типа средств измерений.

2. По результатам исследований диссертанта на методику измерений университетом подана заявка на изобретение и получено положительное решение.

Апробация работы. Результаты работы докладывались и обсуждались на трех научно-технических конференциях (МИИГАиК, 2005-2007 гг.), на научно-технической конференции "НТТМ-2006"(г.Москва: ВВЦ 2006 г.), на международном форуме GEOFORM+ 2006 (г.Москва: "Сокольники", 2006г.), на международном конгрессе "ГеоСибирь-2006" (г.Новосибирск), на международных выставках - INTERGEO 2006 и 2007 (Германия, г.Мюнхен, 2006г, г.Лейпциг, 2007г).

Публикации. По теме диссертационной работы опубликовано 7 печатных работ.

Объем и структура работы. Д иссертационная работа состоит из введения, трех глав, заключения и списка использованных источников информации, содержащего 51 наименование. Работа изложена на 144 страницах машинописного текста, содержит 56 рисунков, 6 таблиц и 10 приложений.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы актуальность темы и основные направления исследований; сформулирована цель работы и ее научная новизна.

Первая глава. В ней проведен аналитический обзор современных методов и приборов для измерения превышений. Рассмотрена классификация средств поверки оптических и оптико-электронных геодезических приборов для измерения превышений. Проведен анализ методов и средств исследований нивелиров и реек, систем измерения вертикальных углов геодезических приборов.

Рассмотренные в первой главе существующие методы и средства исследований нивелиров и реек предусматривают определение накопленной погрешности измерения превышения системы "нивелир – рейка". А так же исследование накопленной погрешности самой нивелирной рейки. На сегодняшний день не существуют методы и стенды для исследования короткопериодической погрешности, и во всех методиках используется только одно эталонное средство измерения превышений.

На основании проведенного анализа существующих методов и средств метрологического исследования тахеометров можно сделать следующие выводы:

- методы сличения и калибровки при помощи многогранных призм, панорамная установка, стенд на основе волоконно-оптических элементов позволяют обеспечить требуемую точность поверки одного из параметров, но с другой стороны имеют ряд существенных недостатков, таких как невозможность автоматизации, сложность конструкции, недостаточная стабильность фиксации эталонных углов, длительное время исследования;

- коллиматорные стенды при широком распространении и отработанности конструкции не обеспечивают автоматизации процесса измерений.

Актуальным является разработка современного универсального метрологического комплекса для проведения поверок и калибровок геодезических приборов, основные требования к которому заключаются в том, что должны быть использованы:

– многогранные эталонные призмы, погрешность изготовления < 0,5”;

– автоколлиматоры для задания референтных направлений с точностью наведения < 0,2”;

– растровые измерительные преобразователи с дискретностью отсчитывания < 0,5мкм;

– лазерные интерферометры с погрешностью < (1мкм + 1pmm),

и удовлетворены следующие требования:

– минимизация времени исследований (за счет сокращения числа измерений и автоматизации процесса поверки и калибровки, компьютерной обработки измерительной информации);

– обеспечение соответствующих климатических условий для эталонных стендовых исследований;

– обеспечение единой метрологической базы поверки и калибровки нивелиров и тахеометров;

– применение оптимальных альтернативных эталонных средств измерений (СИ) (призмы, инварные и композитные жезлы, автоколлиматоры, растровые датчики);

– использование современных эталонных СИ для поверки и калибровки нивелиров и тахеометров.

Следует отметить, что с появлением кодовых лимбов и штрих-кодовых реек большую роль играет погрешность считывания с мер. Погрешность считывания зависит в основном из двух видов погрешностей: погрешностей нанесения делений на меру и погрешностей интерполяции электрического сигнала. Эти погрешности, в свою очередь, носят длиннопериодический (накопленный) и короткопериодический (внутришаговый) характер. Для исследования короткопериодической (внутришаговой) погрешности не разработано методик и средств поверки и калибровки.

С целью устранения этих недостатков в МИИГАиК при участии автора выполнены разработки и исследования универсального метрологического комплекса (УМК-М) для поверки и калибровки современных оптико-электронных приборов при непосредственном участии автора.

Вторая глава. Во второй главе рассмотрены разработанные методы проведения исследований метрологических установок и стендов для поверки и калибровки геодезических приборов для измерения превышений.

Метод исследования короткопериодической погрешности измерения вертикальных углов геодезических приборов . Важной задачей при исследовании оптико-электронных геодезических приборов является испытание систем, измеряющих вертикальные углы. В измерительных растровых системах доминирующей составляющей суммарной погрешности является короткопериодическая (внутришаговая) погрешность. Для исследования короткопериодической погрешности предлагается способ косвенного измерения определения эталонного значения вертикального угла. При известных значениях превышения h и измеренном горизонтальном положении D вычисляется угол n, равный: n = arctgh /D , очевидно: что при D = 10 м и h < 100мм обеспечивает погрешность измерений с sh = 0,003 мм и sD = 3 мм, получаем sn < 0,6”, что вполне приемлемо для высокоточных угломерных приборов (УП). Эталонное превышение h следует устанавливать, руководствуясь длиной растрового преобразователя, целесообразней проходить с некоторым шагом. Для задания такого эталонного превышения используется растровый измерительный преобразователь линейного вида, погрешность которого не превышает 0,003 мм. Горизонтальное проложение D от исследуемого прибора до визирной цели может быть измерено светодальномером. Погрешность определения вертикального угла соизмерима с погрешностью визирования на цель. Чтобы ослабить влияние погрешности визирования, на разработанном стенде может быть использован разрезной фотодиод для фиксации референтного направления, наведение на ось симметрии диода может производиться полупроводниковым лазером. Лазерный излучатель при этом устанавливается на трубу исследуемого прибора в непосредственной близости от визирной оси. Схема метода представлена на рис.1.

Рис. 1. Схема исследования короткопериодической погрешно-сти измерения вертикального угла (ВУ) угломерными приборами .

1 – УП, 2 – растровая мера, 3 – считывающая головка растрового преобразователя, 4 – разрезной фотодиод, 5 – лазерная насадка.

Метод позволяет определить короткопериодическую (внутришаговую) погрешность измерения вертикального угла. Так же по результатам исследования может быть выявлена калибровочная характеристика.

Метод поверки системы лазерного трекера для измерения превышений и вертикальных углов. Лазерный трекер является геодезическим средством измерения и, в соответствии с законом о единстве измерений, требует проведения метрологической поверки или калибровки. Погрешность измерения вертикальной координаты "Z" (превышения) современных лазерных трекеров составляет порядка 20 мкм. Для проведения поверки и калибровки системы лазерного трекера для измерения превышений в данной работе разработан метод, позволяющий исследовать как накопленную погрешность измерения превышения, так и короткопериодическую (внутришаговую) составляющую погрешности.

Для проверки точности измерения вертикальной координаты предложено использовать в качестве эталонного средства измерения растровый измерительный преобразователь, погрешность определения превышения которого не превышает 3 мкм. Для проведения поверки целесообразней выбрать вертикальный диапазон измерения превышений, соответствующий диапазону исследуемого прибора. Методика проведения поверки заключается в измерении одинаковых превышений по растровому измерительному преобразователю и лазерному трекеру. Вполне возможно применить альтернативное эталонное средство поверки – лазерный интерферометр (погрешность 1мкм+1ppm), как отдельно, так и совместно с растровым измерительным преобразователем. При проведении исследования отсчеты по всем трем приборам берутся одновременно и затем сравниваются. Отражатели трекера и интерферометра должны перемещаться совместно с растровым измерительным преобразователем вдоль меры. За эталонное превышение принимается значение, измеренное растровым измерительным преобразователем, а значение, измеренное интерферометром, используется как контрольное. Эталонное превышение по растровому преобразователю сравнивается с превышением, измеренным лазерным трекером (рис.2).

Рис.2. Схема поверки системы лазерного трекера для измере-ния превышений и вертикальных углов:

а) схема поверки при положительных значе-ниях углов наклона, б) схема поверки при отрицательных значе-ниях углов наклона, 1-поверяемый лазерный трекер, 2-лазерный интерферометр, 3-разворачивающий блок интерферометра, 4-отражатель интерферометра, 5-растровый измерительный преобразователь, 6-стеклянная растровая мера, 7-отражатель трекера, 8-поворотная головка трекера.

Калибровку проводят в помещении с постоянной температурой и давлением, при минимальном времени проведения измерений.

Методы поверки и калибровки системы "нивелир – рейка". Основной метрологической погрешностью нивелира является средняя квадратическая погрешность измерений превышений на 1 км нивелирного (двойного) хода. Пути её выявления весьма трудоемки, и получение инструментальной погрешности нивелирования затруднительно. Для решения этой задачи в диссертации разработаны и исследованы методы и средства калибровки системы "нивелир-рейка".

Метод исследования системы "нивелир – рейка" при помощи растрового измерительного преобразователя. Метод разработан для получения инструментальных погрешностей системы "нивелир – рейка". В качестве эталонного средства при калибровке предложено использовать растровый измерительный преобразователь, погрешность измерения которого не превышает 3 мкм. Исследуемый нивелир устанавливается на подвижную каретку вертикального стенда совместно с растровым преобразователем. Нивелиры могут быть, как цифровые, так и оптические. В соответствии с исследуемым нивелиром выбирается рейка со штрих-кодом или с оцифрованной шкалой. Рейка устанавливается на неподвижный столик и приводится в отвесное положение с помощью круглого накладного уровня и подъемных винтов столика.

Методика проведения калибровки заключается в измерении одинаковых значений вертикальных перемещений с помощью растрового измерительного преобразователя и нивелира по рейке. При проведении калибровки предусмотрена возможность применения альтернативного эталонного средства – лазерного интерферометра (погрешность 1мкм+1ppm). Для этого отражатель интерферометра закрепляется совместно с нивелиром и измерительным преобразователем. На рис.3 представлена схема проведения калибровки системы "нивелир – рейка".

В момент проведения исследования отсчеты по нивелиру, интерферометру и датчику измерительного преобразователя берутся одновременно и затем сравниваются. Отражатель интерферометра и нивелир должны перемещаться совместно с растровым измерительным преобразователем вдоль меры (рис.3(а) ). Эталонное превышение сравнивается с превышением, измеренным нивелиром по рейке.

Рис.3. Схема калибровки системы "нивелир – рейка" ,

а) когда нивелир перемещается вдоль растровой меры, б) когда рейка перемещается вдоль растровой меры: 1-исследуемый нивелир, 2-лазерный интерферометр, 3-разворачивающий блок интерферометра, 4-отражатель интерферометра, 5- растровый измерительный преобразователь, 6-стеклянная растровая мера, 7- нивелирная рейка.

Разработанный метод позволяет получить инструментальную погрешность системы "нивелир – рейка", как длиннопериодическую, так и короткопериодическую составляющие. Для разделения погрешностей отдельно нивелира и отдельно рейки следует эталонировать нивелирную рейку (например, на компараторе) и затем учесть погрешность рейки.

Метод исследования системы "нивелир – рейка" на компараторе – основывается, как и в предыдущем методе, на компарировании или сравнении. Для проведения калибровки используются два эталонных средства измерения превышений: Это лазерный интерферометр (погрешность 1мкм+1ppm) и инварный жезл (погрешность 10мкм). Метод заключается в том, что перемещение рейки и эталонного жезла осуществляется в горизонтальном положении по направляющим рельсам на подвижной тележке. Основой данного метода является существенно усовершенствованный оптико-механический компаратор МИИГАиК (рис.4 ). На изолированных "малых" фундаментах (12) с интервалом в 1м закреплены рельсы (3), выставленные в горизонт и по азимуту. На рельсах установлена подвижная каретка (1). На "больших" фундаментах, расположенных за рельсовым путем, закреплена направляющая (7) длиною 3,5м, на которой располагаются микроскопы (5), имеющие возможность перемещения по этой направляющей. Направляющая с микроскопами располагается над рельсовым путем. На расстоянии 25м по направлению рельсов на бетонной основе устанавливается нивелир (8); с другой стороны – лазерный интерферометр (11) и блок опорного канала (10), для измерения интерферометром на подвижной каретке закреплен уголковый отражатель (9). Для разворота изображения рейки на направляющей закреплено наклонное зеркало (6), которое имеет возможность юстировки. Для проведения измерений на каретку одновременно или по очереди устанавливаются инварный жезл (4) и исследуемая рейка (2). Если за эталонное средство принимается только инварный жезл, то температура следует измерять с точностью порядка 0,10 С. При использовании интерферометра, как правило, параметры окружающей среды берутся с датчиков интерферометра.

Рис. 4. Принципиальная схема стенда.

Как и в предыдущем методе, разработанный метод позволяет выявить длиннопериодические и остаточные погрешности измерения превышений, но не позволяет в полной мере оценить короткопериодические погрешности. Это связанно с ограниченностью задания минимального превышения ценой деления рейки. Но в методе предлагается задавать эталонные превышения интерферометром; это даст возможность выявление короткопериодической погрешности измерения превышения системы "нивелир – рейка".

Метод исследования системы "нивелир – рейка" с использованием концевых мер длины основан на сравнение эталонных превышений, задаваемых при помощи концевых мер длины (КМД), с измеренными превышениями нивелиром по рейке. Для изменения высоты точки в разработанном методе используются концевые меры длины II разряда, погрешность размера которых не превышает 0,4 мкм (при температуре 200 С). Эталонные превышения задаются в диапазоне 0¸200мм с шагом от 0,2мм до 10мм, что позволяет выявить короткопериодические погрешности на отдельном участке рейки. Таким образом, существует возможность исследовать инструментальную погрешность системы "нивелир – рейка".

Для выполнения исследования нивелир устанавливается на жесткое основание, на выбранном расстоянии устанавливается горизонтальный столик с отшлифованной поверхностью. На столик поочередно устанавливаются и притираются КМД различной высоты, на меры ставится нивелирная рейка с накладным уровнем. При установке различных КМД и рейки снимается отсчет по нивелиру. Результатом калибровки являются графики погрешности измерения высоты КМД.

Предлагаемый метод является более функциональным, так как позволяет производить исследование на больших расстояниях между нивелиром и рейкой, а так же позволяет проводить испытания как в лабораторных, так и в полевых условиях.

Представленные во 2-ой главе разработки позволяют:

- исследовать короткопериодическую погрешность измерения вертикального угла геодезических приборов – теодолитов, тахеометров;

- исследовать инструментальную погрешность системы "нивелир – рейка" при помощи растрового измерительного преобразователя;

- исследовать инструментальную погрешность системы "нивелир – рейка" на компараторе;

- исследовать инструментальную погрешность системы "нивелир – рейка" с использованием концевых мер длины;

- провести калибровку координатных систем типа лазерный трекер.

Третья глава. В этой главе представлены разработанные стенды для поверки и калибровки, входящие в разработанную при участии автора поверочную установку УМК-М.

Стенд УМК-М для поверки и калибровки систем геодезических приборов для измерения вертикальных углов (Вертикальный стенд) – рис. 5.

Рис.5. Схема стенда для исследования тахеометров при измерении ВУ.

В точках К1,К3,К4,К5,К6, установлены коллиматоры (в качестве коллиматоров использованы зрительные трубы теодолитов типа Т2), а в точке Т – поверяемый теодолит. Взаимное расположение коллиматоров таково, что обеспечивает измерение вертикальных углов (ВУ) от 00 до450 и от 00 до - 450 .

Для испытаний геодезических приборов необходимо знать эталонный угол. Для измерения эталонных углов были использованы высокоточные приборы: оптический теодолит Т1 и электронный тахеометр фирмы "Leica" TPS 1100 (mn = 0,5”). Были произведены измерения всех вертикальных углов двенадцатью приемами. В результате измерений были получены средние квадратические погрешности (СКП) для средних значений ВУ из 12-ти приемов (см. табл. 1) .

Таблица 1

Прибор Теодолит Т1 Тахеометр TPS 1100
n +40 +250 +450 -450 +40 +250 +450 -450
mn 2,9” 2,6” 2,3” 3,8” 3,2” 2,6” 3,1” 2,6”

Как видно из табл. 1 , СКП эталонных углов, измеренных двумя разными по точности приборами, одинаковые. Отсюда можно сделать


29-04-2015, 00:52


Страницы: 1 2
Разделы сайта