Вещественная, структурная и фазовая неоднородность пород
Петрофизика (физика горных пород) — дисциплина естествознания, в которой изучают закономерности изменения физических свойств горных пород и связи между этими свойствами.
Физические свойства горных пород — это их способность взаимодействовать с естественными физическими полями Земли (гравитационным, магнитным, тепловым) или с искусственно созданными физическими полями (волновым, радиоактивным, полем давлений флюидов, оптическим и другими), создаваемыми в горных породах.
Породы могут быть однофазными и многофазными.
Физические свойства однородных и однофазных горных пород и минералов в значительной мере обусловлены строением атомов химических элементов их слагающих.
Физические свойства гетерогенных и многофазных горных пород (например, обломочных, глинистых и карбонатных), помимо свойств атомов, в значительной мере определяются степенью неоднородности пород, которая может быть охарактеризована емкостными, капиллярными и газо-, гидродинамическими свойствами.
Именно неоднородность физических свойств лежит в основе использования геофизических методов для дистанционного изучения строения литосферы, слагающих ее горных пород и выявление в них полезных ископаемых.
Каковы место и роль петрофизики при геофизических исследованиях?
Технологический цикл любого геофизического исследования состоит из трех этапов:
- измерения параметров физического поля в неоднородной среде;
- геофизической интерпретации результатов этих измерений с целью определения физических свойств и построения вероятной геометрии физической модели изучаемой среды (в основе которой лежат методы и результаты решения прямых геофизических задач);
- геологической интерпретации физической модели и построения физико-геологической модели изучаемой среды.
Основой для геологической интерпретации геофизических данных служат петрофизические связи, позволяющие перейти от неоднородностей, обусловленных физическими свойствами среды, к непосредственно геологическим объектам и их литологическим свойствам.
Построение надежной физико-геологической модели требует использования комплексных геофизических исследований и привлечения первоначальной геологической информации. И то и другое нуждается в подтверждении обоснованными петрофизическими связями. От этого зависит конечный итог геофизических исследований — уровень понимания геологического строения региона, надежность поисков месторождений полезных ископаемых, промышленная оценка запасов этих ископаемых.
В петрофизике горную породу представляют в общем случае как гетерогенную многокомпонентную многофазную термодинамическую систему.
Фазовая неоднородность предполагает наличие границ раздела между обособленными объемами занимаемыми каждой фазой в породе (твердая, жидкая , газообразная). Примером фазовой неоднородности может служить водоносный неглинистый коллектор, в котором твердая фаза минерального скелета и свободная вода в порах занимают обособленные объемы, разделенные поверхностью с малой площадью. С появлением глинистой компоненты в минеральном скелете возрастает площадь поверхности раздела.
Компонентную неоднородность породы характеризуют составом твердой, жидкой и газообразной фаз. Ее можно проиллюстрировать на следующих примерах: доломитизированный известняк имеет в составе твердой фазы два минерала— доломит и кальцит; нефтеводоносный коллектор содержит в составе жидкой фазы нефть и свободную воду.
Структурно-текстурноя неоднородность предполагает наличие двух или более различных пород, чередующихся в объеме изучаемого геологического объекта. Примерами текстурной неоднородности являются разновидности глинистого песчаника, содержащие глинистый материал, распределенный по объему в виде прослоев
Масштабы неоднородности зависят от ее природы и образуют различные уровни.
Например, находясь на уровне пор и скелетных зерен, мы уделяем основное внимание исследованию геометрии пор и минерального скелета породы.
Уровни неоднородности более высокого порядка исследуют обычно комплексом геофизических методов в разрезах скважин.
Таким образом, исследуя неоднородности разного уровня и разными методами мы получаем необходимую нам петрофизическую информацию.
Пористость
Горные породы, руды, каменные угли и минералы, слагающие земную кору, не являются сплошными телами, все они содержат полости (поры). Поры это небольшие пространства, не занятые минеральным скелетом, замкнутые, либо сообщающиеся между собой и атмосферой.
Пористость – это свойство породы содержать не заполненные твердой фазой объемы внутри нее.
По происхождению поры делятся на первичные, которые сформировались в момент образования горной породы, и вторичные, возникшие уже после образования породы, в процессе ее литогенеза (рис. 3). Первичные это как правило межзерновые поры. Классические примеры пород с первичными порами — это осадочные терригенные породы: пески, песчаники, глины.
К вторичным полостям относятся трещины, каверны или каналы выщелачивания минералов. Примеры пород с вторичными полостями — трещинные и трещинно-кавернозные известняки и доломиты.
Количественно объем всех видов пор и полостей в горных породах принято оценивать коэффициентом пористости:
кп = Vп /V
где Vп – объем пор в породе; V — объем сухой породы.
Пористость однородных, хорошо отсортированных пород выше чем неоднородных, т.к. в неоднородных породах более мелкие частицы располагаются среди более крупных и общая плотность упаковки повышается. Существенное влияние на пористость пород оказывает плотность сложения. На рис 1.11 видно, что в зависимости от плотности укладки равновеликих частиц шарообразной формы, независимо от их размера, коэффициент пористости может изменяться от 26 % при тетраэдрической укладке частиц, до 48 % при кубической.
По размерам поры и каверны можно характеризовать эффективным диаметром, а трещины — средней шириной (раскрытием) В основу классификации пор по размерам положено взаимодействие твердой поверхности с насыщающей поры пластовой водой.
Для оценки эффективного диаметра пор dэф используют уравнения Лапласа для капиллярного давления в круглом цилиндрическом капилляре:
dэф = 4σ cosθ/pк
где σ – поверхностное натяжение, Н/м; pк — капиллярное давление, Па; θ — краевой угол смачиваемости.
По диаметру пор породы делят на четыре группы:
Сверхкапилляры - поры, имеющие диаметр dэф > 10-4 м. Доля воды, связанной капиллярными силами и силами адсорбции с твердой фазой, сравнительно невелика, поэтому пластовая вода в этих порах может двигаться в основном под действием силы тяжести. Сверхкапиллярные поры характерны для слабосцементированных галечников, гравия, крупно- и среднезернистых песков, обломочных разностей карбонатных пород; в зонах выщелачивания карбонатных пород они могут достигать весьма больших размеров (каверны, карсты).
Капилляры это поры с dэф = 10-7 - 10-4 м . В них радиус менисков, образовавшихся на границе двух фаз в результате поверхностного натяжения, таков, что они препятствуют движению воды под действием силы тяжести, т. е. вода в этих порах удерживается капиллярными силами. Капиллярные поры типичны для сцементированных песчаников, обломочных и кристаллических известняков, доломитов.
В субкапиллярных порах (dэф = 2*10-9 – 1*10-7 м) велика доля воды, на которую действуют адсорбционные силы со стороны твердой поверхности. Поры в этом случае заполнены водой, которая практически не способна к перемещению в поле силы тяжести или под влиянием капиллярных сил. Субкапиллярные поры свойственны глинам, мелкокристаллическим и мелоподобным известнякам, доломитам, трепелам, пепловым туфам и другим тонкозернистым породам. В отсутствие трещиноватости все эти породы не являются коллекторами.
В микропорах (dэф < 2*10-9 м), диаметр которых соизмерим с толщиной слоя прочносвязанной воды, пластовая вода при температурах менее 70 °С практически неподвижна. Микропоры установлены у некоторых природных цеолитов.
Трещиноватость наиболее характерна для плотных, низкопористых горных пород. Происхождение трещин чаще всего тектоническое, хотя в природе можно встретить трещины диагенеза (доломитизация карбонатов), трещины уплотнения и трещины автогидроразрыва в зонах образования аномально высоких пластовых давлений.
По характеру взаимной связи между порами и движению флюидов в породе различают общую, открытую, эффективную и динамическую пористости.
Виды пористости:
Коэффициентом открытой пористости кп.о оценивается объем пор, сообщающихся между собой в породе и с окружающей средой.
кп.о = Vп.о /V
где Vп.о – объем открытых пор в породе.
Открытую пористость определяют путем взвешивания сухих и насыщенных керосином образцов пород (метод Преображенского). Взвешивают сухой образец, затем насыщают керосином (т. к. керосин обладает хорошей текучестью) и взвешивают, получают разность масс, и, зная, плотность керосина, высчитывают его объем в образце, т. е. коэффициент открытой пористости.
В настоящее время при определении открытой пористости большинство крупных компаний используют метод газовой порометрии. Чаще всего это установка APP 608. Измерения порового объема выполняются с использованием принципа расширения гелия по закону Бойля. Закон Бойля гласит, что давление (P) какого-либо идеального газа, умноженное на его объем (V), дает постоянное значение (при постоянной температуре): P1 *V1 =P2 *V2 , при Т=const.
В установке для измерения пористости используется "Регулятор изменения объема". Когда стабилизируется давление и записывается значение P1 ,объем системы с помощью "Регулятора изменения объема" изменятся на известную величину (Δ V) и после стабилизации давления измеряется P2 , таким образом можно рассчитать неизвестный объем (V):
P1 *V=P2 *(V+ Δ V) => V= P2 * Δ V/( P1 - P2 ).
Коэффициент эффективной пористости кп.эф , (понятие введено Л. С. Лейбензоном) характеризует полезную емкость породы для углеводородов (нефти или газа) и представляет собой объем открытых пор за исключением объема, заполненного физически связанной пластовой водой, которую нельзя удалить из образца под воздействием капиллярных сил. Объем такой воды в образце характеризуется коэффициентом остаточной водонасыщенности кв.о. :
кп.эф = (Vп.о . - Vв.св )/V = кп.о (1 - кв.о )
где Vв.св — объем связанной воды.
Однако не весь объем нефти или газа, заполняющих полезную емкость горных пород, можно привести в движение при разработке месторождений. Определенная часть их, находящаяся в мелких и тупиковых порах, при реализуемых градиентах давления вытесняющей жидкости остается в порах без движения.
Коэффициент динамической пористости кп.д показывает, в какой части объема породы при заданном градиенте давления может наблюдаться движение жидкости или газа. Этот объем определяют как разницу между объемом эффективных пор (Vп.о . – Vв.св ) и объемом пор Vн.о занятых остаточной нефтью:
кп.д = (Vп.о . – Vв.св – Vн.о )/V = (Vп.эф – Vн.о )/V = кп.о (1 – кв.о – кн.о )
Некоторая неопределенность данного выражения заключается в том, что величина кп.д зависит не только от свойств породы, но и от величины приложенного градиента давления и времени вытеснения керосина другим флюидом. Так, при длительном приложении высоких градиентов давления вытеснения кп.д —> кп.эф . Однако при низких градиентах давления вытеснения, как правило, кп.д < кп.эф .
В заключение этого раздела необходимо указать на следующую закономерность в величине коэффициентов пористости, определенных на одном образце:
кп > кп.о > кп.эф > кп.д .
ПОРИСТОСТЬ ОСАДОЧНЫХ ПОРОД
Осадочные породы, по М. С. Швецову, можно подразделить на три большие группы: 1) обломочные; 2) хемогенные и биогенные; 3) глинистые.
Наибольшую роль при формировании осадочных толщ играют обломочные, карбонатные, глинистые, соляные и сульфатные породы.
Пористость обломочных, карбонатных и глинистых пород изменяется в широких пределах. Ее конкретное значение для каждой породы определяется многими факторами. Однако наиболее значимыми из них являются: максимальная глубина погружения, интенсивность вторичных процессов, температура, возраст пород и содержание глинистых минералов.
Структура порового пространства.
Поровое пространство горной породы, является весьма сложным по своей форме и состоит из сочетания пор разных размеров. Как мы уже разобрались одни поры хорошо проводят флюиды, другие — заполнены адсорбированной и капиллярно-удержанной водой.
Характер распределения пор по размерам обычно называют структурой порового пространства изучаемой породы. Существуют прямые и косвенные методы изучения структуры порового пространства. К прямым методам относятся оптические, например, исследование микрофотографий шлифов (А. Ф. Богомолова, Н. А. Орлова, 1961 г.) и с помощью электронной микроскопии, к косвенным — капиллярные методы.
Оптические методы характеризуют распределение пор на плоскости, и требуются многократные исследования на параллельных плоскостях для представления об изменении пор в объеме.
Капиллярные методы характеризуют структуру порового пространства в объеме, но они, как правило, не могут быть использованы для изучения трещиновато-кавернозных пород.
Известны три разновидности капиллярных методов: 1) полупроницаемой мембраны; 2) ртутной порометрии; 3) капиллярной пропитки.
В методе полупроницаемой мембраны из водонасыщенного образца, установленного на водонасыщенной искусственной мембране размером пор 2*10-6 м, азотом вытесняют воду и строят зависимость величины водонасыщенности образца от величины капиллярного давления. Из уравнения Лапласа вычисляют эффективные диаметры пор, соответствующие каждой точке давления р к , а по изменению водонасыщенности — относительное содержание этих пор в объеме породы. Строят график распределения пор в образце по их размерам.
Размер пор полупроницаемой мембраны ограничивает нижний предел изучения пор. Радиусы пор вычисляют в диапазоне (2-100)*10-6 м.
Пленку смачивающей жидкости (воды) на поверхности пор породы трудно учесть в расчетах, что снижает точность определения распределения пор.
В методе ртутной порометрии в вакуумированный образец нагнетают ртуть. Чем меньше диаметр пор, тем большее давление нужно приложить для преодоления капиллярных сил. Строят зависимость капиллярного давления рк от насыщенности образца ртутью, затем — кривую распределения пор.
Диапазон изучаемых пор при работе с этим методом расширяется до (0,01-100)*10-6 м.
К недостаткам метода можно отнести слабую изученность зависимости θ от влажности и литологии пород и невозможность использовать образец для повторных или последующих исследований.
В методе капиллярной пропитки смачивающая люминесцирующая в ультрафиолетовом свете жидкость под воздействием капиллярных сил впитывается образцом. С помощью автоматической фотометрической установки наблюдают за изменением окраски верхнего торца образца под влиянием впитывающейся жидкости. Дополнительное изучение извилистости поровых каналов электрическими методами позволяет проводить моделирование порового пространства.
Эти капиллярные методы основаны на применении уравнения Лапласа:
рк = 2σcosθ/r
где σ — поверхностное натяжение на границе смачивающей фазы и несмачивающей фазы; r — радиус капилляра; θ — угол смачивания, для гидрофильной поверхности θ < 90°.
Поверхностное натяжение . У молекул поверхностного слоя потенциальная энергия вдвое выше, чем у молекул внутри жидкости. Стремясь занять положение с наименьшей потенциальной энергией, молекулы жидкости на поверхности стремятся втянуться внутрь жидкости. Таким образом, жидкость под действием внутренних сил молекулярного притяжения стремится уменьшить свободную поверхность (то есть поверхность соприкосновения с воздухом). Примерами этого служат шарообразность капель дождя или мыльного пузыря: шар - это тело, имеющее при данном объеме наименьшую площадь поверхности.
Смачивание
. Если жидкость контактирует с твердым телом, то существуют две возможности: 1) молекулы жидкости притягиваются друг у кругу сильнее, чем к молекулам твердого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведет себя ртуть на стекле, вода на парафине или "жирной" поверхности. В этом случае говорят, что жидкость не смачивает поверхность, такая поверхность называется гидрофобной;
2) молекулы жидкости притягиваются друг у кругу слабее, чем к молекулам твердого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведет себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность, такая поверхность называется гидрофильной.
Угол смачивания это угол между смачиваемой поверхностью и прямой направленной по касательной к поверхности смачивающей фазы в точке контакта.
а б
Рисунок а капля на поверхности твердой фазы, б капилляр над поверхностью свободной воды.
Ранее предполагалось, что поверхность твердой фазы полностью гидрофильна. В этом случае пленка воды равномерно покрывает поверхность, все активные центры поверхности заняты молекулами воды или гидратированными катионами. Однако, реальные коллекторы нефти и газа в пластовых условиях нередко бывают частично гидрофобными. Это значит, что часть поверхности пор водой не смачивается; в пределах этих «островов» отсутствует пленка воды, а нефть или газ непосредственно граничат с поверхностью твердой фазы.
Избирательная смачиваемость поверхности твердой фазы водой определяется величиной угла смачивания θ на границе воды и другой подвижной фазы в капилляре (воздух, газ, нефть). При θ=0 поверхность считается полностью гидрофильной; при 0<θ<90° поверхность преимущественно гидрофильна; при 90°< θ <180°—преимущественно гидрофобна; при θ =180° — полностью гидрофобна.
Преимущественно гидрофобны твердые битумы и ископаемые угли. Глины и агрегаты глинистых минералов в породах коллекторах (глинистый цемент), как правило, гидрофильны, если не считать глинистых нефтематеринских отложений (например, породы баженовской свиты на территории Западной: Сибири).
Гидрофобизация породы-коллектора оказывает существенное влияние на величину подсчетных параметров и эффективность разработки месторождения, поэтому необходимы учет степени гидрофобизации и количественная ее оценка.
В основе количественной оценки лежит сравнение результатов эксперимента, выполненного по одной и той же программе на «сыром» образце, извлеченном из скважины, с предполагаемой частичной гидрофобностью, и на том же образце, прошедшем экстракцию — обработку органическими растворителями, в результате которой частично гидрофобный образец становится полностью гидрофильным. Качественный признак частичной гидрофобности «сырого» образца — изменение результатов эксперимента после экстракции.
Гранулометрический состав осадочных пород.
Как мы говорили: размерность, однородность, сортировка оказывают большое влияние на структуру порового пространства поэтому очень полезно иметь представление о гранулометрическом составе.
Под гранулометрическим составом породы понимается относительное содержание в ней (по массе) частиц различных размеров. Для определения гранулометрического состава выполняется гранулометрический (механический) анализ. Он заключается в расчленении породы на группы с близкими по величине частицами (фракциями). Размеры частиц горных пород изменяются в очень широких пределах — от 1 мкм или 0,001 мм (частицы глинистых и коллоидно-дисперсных минералов) до сотен
29-04-2015, 00:57