Содержание
Введение………………………………………………………….…………3
1. Гидравлические масла……..………………………………………………….4
2. Общие требования и свойства………………………………………………..6
3. Виды гидравлических масел………………………………………………...13
3.1. Маловязкие гидравлические масла……………………………………13
3.2. Средневязкие гидравлические масла…………………………………16
3.3. Вязкие гидравлические масла…………………………………………18
3.4. Синтетические и полусинтетические гидравлические масла…….....20
Заключение………………………………………………………………..24
Список использованной литературы………………………………...…..25
Введение
Цель данного реферата состоит в изучении гидравлических масел в горной промышленности. Для достижения этой цели необходимо решить следующие задачи: изучить общие требования и свойства гидравлических масел, а так же рассмотреть виды гидравлических масел.
1. Гидравлические масла
Гидравлические масла (рабочие жидкости для гидравлических систем) разделяют на нефтяные, синтетические и водно-гликоливые. По назначению их делят в соответствии с областью применения: для летательных аппаратов, мобильной наземной, речной и морской техники; для гидротормозных и амортизаторных устройств различных машин; для гидроприводов, гидропередач и циркуляционных масляных систем различных агрегатов, машин и механизмов, составляющих оборудование промышленных предприятий.
Рассмотрим рабочие жидкости для гидравлических систем мобильной техники, обозначенные ГОСТ 17479,3-85 как гидравлические масла, а также некоторые наиболее распространенные гидротормозные и амортизаторные жидкости на нефтяной и синтетической основах.
Основная функция рабочих жидкостей (жидких сред) для гидравлических систем - передача механической энергии от ее источника к месту использования с изменением значения или направления приложения силы. Гидравлический привод не может действовать без жидкой рабочей среды, являющейся необходимым конструкционным элементом любой гидравлической системы. В постоянном совершенствовании конструкций гидроприводов отмечаются следующие тенденции: повышение рабочих давлений и связанное с этим расширение верхних температурных пределов эксплуатации рабочих жидкостей; Уменьшение рабочей массы привода или увеличение отношения передаваемой мощности к массе, что обуславливает более интенсивную эксплуатацию рабочей жидкости; уменьшение рабочих зазоров между деталями рабочего органа (выходной и приемной полостей гидросистемы), что ужесточает требования к чистоте рабочей жидкости ( или её фильтруемости при наличии фильтров в гидросистемах).
С целью удовлетворения требований, продиктованных указанными тенденциями развития гидроприводов, современные рабочие жидкости ( гидравлическое масло ) для них должны обладать определенными характеристиками:
1) Иметь оптимальный уровень вязкости и хорошие вязкостно температурные свойства в широком диапазоне температур, т.е. высокие индекс вязкости;
отличатся высоким антиокеслительным потенциалом, а также термической и химической стабильностью, обеспечивающими длительную бессменную работу жидкости в гидросистеме;
2) Защищать деталь гидропривода от карозии; обладать хорошей фильтруемостью;
3) Иметь необходимые деаэрирующие, деэмульгирующие и антипенные свойства;
4) Предохранять детали гидросистемы от износа;
5) Быть совместимыми с материалами гидросистемы.
Большинство массовых сортов гидравлического масла выробатывают на основе хорошо очищенных базовых масел, получаемых из рядовых нефтяных фракций с использованием современных технологических процессов экстракционной и гидрокаталетической очистки.
Физико-химические и эксплуатационные свойства современных гидравлических масел значительно улучшаются при введении в них функциональных присадок - антиокислительных, антикоррозионных, противоизносных, антипенных и других.
2. Общие требования и свойства
Гидравлические масла (рабочие жидкости для гидравлических систем) разделяют на нефтяные, синтетические и водно-гликолевые. По назначению их делят в соответствии с областью применения:
- для летательных аппаратов, мобильной наземной, речной и морской техники;
- для гидротормозных и амортизаторных устройств различных машин;
- для гидроприводов, гидропередач и циркуляционных масляных систем различных агрегатов, машин и механизмов, составляющих оборудование промышленных предприятий.
В данной главе рассмотрены рабочие жидкости для гидросистем мобильной техники, обозначенные ГОСТ 17479.3-85 как гидравлические масла, а также некоторые наиболее распространенные гидротормозные и амортизаторные жидкости на нефтяной и синтетической основах.
О сновная функция рабочих жидкостей (жидких сред) для гидравлических систем - передача механической энергии от ее источника к месту использования с изменением значения или направления приложенной силы.
Гидравлический привод не может действовать без жидкой рабочей среды, являющейся необходимым конструкционным элементом любой гидравлической системы. В постоянном совершенствовании конструкций гидроприводов отмечаются следующие тенденции:
- повышение рабочих давлений и связанное с этим расширение верхних температурных пределов эксплуатации рабочих жидкостей;
- уменьшение общей массы привода или увеличение отношения передаваемой мощности к массе, что обусловливает более интенсивную эксплуатацию рабочей жидкости;
- уменьшение рабочих зазоров между деталями рабочего органа (выходной и приемной полостей гидросистемы), что ужесточает требования к чистоте рабочей жидкости (или ее фильтруемости при наличии фильтров в гидросистемах).
С целью удовлетворения требований, продиктованных указанными тенденциями развития гидроприводов, современные рабочие жидкости (гидравлические масла) для них должны обладать определенными характеристиками:
- иметь оптимальный уровень вязкости и хорошие вязкостно-температурные свойства в широком диапазоне температур, т.е. высокий индекс вязкости;
- отличаться высоким антиокислительным потенциалом, а также термической и химической стабильностью, обеспечивающими длительную бессменную работу жидкости в гидросистеме;
- защищать детали гидропривода от коррозии;
- обладать хорошей фильтруемостью;
- иметь необходимые деаэрирующие, деэмульгирующие и антипенные свойства;
- предохранять детали гидросистемы от износа;
- быть совместимыми с материалами гидросистемы.
Большинство массовых сортов гидравлических масел вырабатывают на основе хорошо очищенных базовых масел, получаемых из рядовых нефтяных фракций с использованием современных технологических процессов экстракционной и гидрокаталитической очистки. Физико-химические и эксплуатационные свойства современных гидравлических масел значительно улучшаются при введении в них функциональных присадок - антиокислительных, антикоррозионных, противоизносных, антипенных и др.
Вязкостные и низкотемпературные свойства определяют температурный диапазон эксплуатации гидросистем и оказывают решающее влияние на выходные характеристики гидропривода. При выборе вязкости гидравлического масла важно знать тип насоса. Изготовители насоса, как правило, рекомендут для него пределы вязкости: максимальный, минимальный и оптимальный. Максимальная - это наибольшая вязкость, при которой насос в состоянии прокачивать масло. Она зависит от мощности насоса, диаметра и протяженности трубопровода. Минимальная - это та вязкость при рабочей температуре, при которой гидросистема работает достаточно надежно. Если вязкость уменьшается ниже допустимой, растут объемные потери (утечки) в насосе и клапанах, соответственно падает мощность и ухудшаются условия смазывания. Пониженная вязкость гидравлического масла вызывает наиболее интенсивное проявление усталостных видов изнашивания контактирующих деталей гидросистемы. Повышенная вязкость значительно увеличивает механические потери привода, затрудняет относительное перемещение деталей насоса и клапанов, делает невозможной работу гидросистем в условиях пониженных температур.
Вязкость масла непосредственно связана с температурой кипения масляной фракции, ее средней молекулярной массой, с групповым химическим составом и строением углеводородов. Указанными факторами определяется абсолютная вязкость масла, а также его вязкостно-температурные свойства, т.е. изменение вязкости с изменением температуры. Последнее характеризуется индексом вязкости масла.
Д ля улучшения вязкостно-температурных свойств применяют вязкостные (загущающие) присадки - полимерные соединения. В составе товарных гидравлических масел в качестве загущающих присадок используют полиметакрилаты, полиизобутилены и продукты полимеризации винил-бутилового эфира (винипол).
Антиокислительная и химическая стабильности характеризуют стойкость масла к окислению в процессе эксплуатации под воздействием температуры, усиленного барботажа масла воздухом при работе насоса. Окисление масла приводит к изменению его вязкости (как правило, к повышению) и к накоплению в нем продуктов окисления, образующих осадки и лаковые отложения на поверхностях деталей гидросистемы, что затрудняет ее работу.
Повышения антиокислительных свойств гидравлических масел достигают путем введения антиокислительных присадок обычно фенольного и аминного типов.
В гидросистемах машин и механизмов присутствуют детали из разных металлов: разных марок стали, алюминия, бронзы, которые могут подвергаться коррозионно-химическому изнашиванию . Коррозия металлов может быть электрохимической, возникающей обычно в присутствии воды, и химической, протекающей под воздействием химически агрессивных сред (кислых соединений, образующихся в процессе окисления масла) и под воздействием химически-активных продуктов расщепления присадок при повышенных контактных температурах поверхностей трения. Устранению коррозии металлов способствуют вводимые в масло присадки - ингибиторы окисления. препятствующие образованию кислых соединений, и специальные антикоррозионные добавки.
Стремление к улучшению противоизносных свойств гидравлических масел вызвано включением в новые конструкции гидравлических систем интенсифицированных гидравлических насосов. Наибольшее распространение в качестве присадок, обеспечивающих достаточный уровень противоизносных свойств гидравлических масел, наибольшее распространение получили диалкилдитиофосфаты металлов (в основном цинка) или беззольные (аминные соли и сложные эфиры дитиофосфорной кислоты).
К гидравлическим маслам предъявляют достаточно жесткие требования по нейтральности их по отношению к длительно контактирующим с ними материалам. Учитывая, что рабочие температуры масла в современных гидропередачах достаточно высоки и резиновые уплотнения могут быстро разрушаться, в гидравлических маслах недопустимо высокое содержание ароматических углеводородов, проявляющих наибольшую агрессивность по отношению к резинам. Содержание ароматических углеводородов характеризуется показателем "анилиновая точка" базового масла. При работе циркулирующих гидравлических масел недопустимо пенообразование . Оно нарушает подачу масла к узлу трения и, насыщая масло воздухом, интенсифицирует его окисление, ухудшая отвод тепла от рабочих поверхностей, вызывает кавитационные повреждения деталей, перегрев гидропривода и его повышенный износ. Для обеспечения хороших антипенных свойств масла преимущественное значение имеет полнота удаления из базового масла поверхностно-активных смолистых веществ. Чтобы предотвратить образование пены или ускорить ее разрушение, в масло вводят антипенную присадку (например, полиметилсилоксан), которая снижает поверхностное натяжение на границе раздела жидкости и воздуха, что приводит к ускоренному разрушению пузырьков пены.
В составе гидравлических масел крайне нежелательно наличие механических примесей и воды . Вследствие весьма малых зазоров рабочих пар гидросистем (особенно, оснащенных аксиально-поршневыми механизмами) наличие загрязнений может привести не только к износу элементов гидрооборудования, но и к заклиниванию деталей. Для очистки рабочей жидкости от загрязнений в гидросистемах применяют фильтры различных типов. Даже незначительное количество (0,05-0,1 %) воды отрицательно влияет на работу гидросистем. Вода, попадающая в гидросистему с маслом или в процессе эксплуатации, ускоряет процесс окисления масла, вызывает гидролиз гидролитически неустойчивых компонентов масла (в частности, присадок - солей металлов). Продукты гидролиза присадок вызывают электрохимическую коррозию металлов гидросистемы. Вода способствует образованию шлама неорганического и органического происхождения, который забивает фильтр и зазоры оборудования, тем самым нарушая работу гидросистемы.
К некоторым маслам предъявляют специфические, дополнительные требования. Так, масла, загущенные полимерными присадками, должны обладать достаточно высокой стойкостью к механической и термической деструкции; для масел, эксплуатируемых в гидросистемах речной и морской техники, особенно важна влагостойкость присадок и малая эмульгируемооть.
В некоторых специфических областях применения, таких, как горнодобывающая и сталелитейная промышленности, в отдельную группу выделились огнестойкие рабочие жидкости на водной основе (эмульсии "масло в воде", "вода в масле", водно-гликолевые смеси и др.) и жидкости, не содержащие воды (сложные эфиры фосфорной кислоты, олигоорганосилоксаны, фторированные углеводороды и др.).
Система обозначения гидравлических масел
Принятая в мире классификация минеральных гидравлических масел основана на их вязкости и наличии присадок, обеспечивающих необходимый уровень эксплуатационных свойств.
В соответствии с ГОСТ 17479.3-85 ("Масла гидравлические. Классификация и обозначение") обозначение отечественных гидравлических масел состоит из групп знаков, первая из которых обозначается буквами "МГ" (минеральное гидравлическое), вторая - цифрами и характеризует класс кинематической вязкости, третья - буквами и указывает на принадлежность масла к группе по эксплуатационным свойствам.
Классы вязкости гидравлических масел
Класс вязкости | Кинематическая вязкость при 40 °С, мм2/c |
Классвязкости |
Кинематическая вязкость при 40 °С, мм2/c |
5 | 4,14-5,06 | 32 | 28,80-35,20 |
7 | 6,12-7,48 | 46 | 41,40-50,60 |
10 | 9,00-11,00 | 68 | 61,20-74,80 |
15 | 13,50-16,50 | 100 | 90,00-110,00 |
22 | 19,80-24,20 | 150 | 135,00- 165,00 |
По ГОСТ 17479.3-85 (аналогично международному стандарту ISO 3448) гидравлические масла по значению вязкости при 40 °С делятся на 10 классов (табл. 4.11).
В зависимости от эксплуатационных свойств и состава (наличия соответствующих функциональных присадок) гидравлические масла делят на группы А, Б и В.
Группа А (группа НН по ISO) - нефтяные масла без присадок, применяемые в малонагруженных гидросистемах с шестеренными или поршневыми насосами, работающими при давлении до 15 МПа и максимальной температуре масла в объеме до 80 °С.
Группа Б (группа HL по ISO) - масла с антиокислительными и антикоррозионными присадками. Предназначены для средненапряженных гидросистем с различными насосами, работающими при давлениях до 2,5 МПа и температуре масла в объеме свыше 80 °С.
Группа В (группа HM по ISO) - хорошо очищенные масла с антиокислительными, антикоррозионными и противоизносными присадками. Предназначены для гидросистем, работающих при давлении свыше 25 МПа и температуре масла в объеме свыше 90 °С.
В масла всех указанных групп могут быть введены загущающие (вязкостные) и антипенные присадки. Загущенные вязкостными полимерными присадками гидравлические масла соответствуют группе HV по ISO 6743/4.
В таблице приведено обозначение гидравлических масел существующего ассортимента в соответстствии с классификацией по ГОСТ 17479.3-85.
Обозначение товарных гидравлических масел
Обозначение масла по ГОСТ 17479.3-85 |
Товарная марка |
Обозначение масла по ГОСТ 17479.3-85 |
Товарная марка |
МГ-5-Б | МГЕ-4А, ЛЗ-МГ-2 | МГ-22-В | "Р" |
МГ-7-Б | МГ-7-Б, РМ | МГ-32-А | "ЭШ" |
МГ-10-Б | МГ-10-Б, РМЦ | МГ-32-В | "А", МГТ |
МГ-15-Б | АМГ-10 | МГ-46-В | МГЕ-46В |
МГ-15-В | МГЕ-10А, ВМГЗ | МГ-68-В | МГ-8А-(М8-А) |
МГ-22-А | АУ | МГ-100-Б | ГЖД-14С |
МГ-22-Б | АУП |
В таблице кроме чисто гидравлических масел включены масла марок "А", "Р", МГТ,
отнесенные к категории трансмиссионных масел для гидромеханических передач.
Однако благодаря высокому индексу вязкости, хорошим низкотемпературным и эксплуатационным свойствам и из-за отсутствия гидравлических масел такого уровня вязкости они также используются в гидрообъемных передачах и гидросистемах навесного оборудования наземной техники. Некоторые давно разработанные и выпускаемые гидравлические масла по значению вязкости нестрого соответствуют классу по классификации, обозначенной ГОСТ 17479.3-85, а занимают промежуточное положение. Например, масло ГТ-50, имеющее вязкость при 40 °С 17-18 ммУс, находится в ряду классификации между 15 и 22 классами вязкости.
По вязкостным свойствам гидравлические масла условно делятся на следующие:
- маловязкие - классы вязкости с 5 по 15;
- средневязкие - классы вязкости 22 и 32;
- вязкие - классы вязкости с 46 по 150.
3. Виды гидравлических масел
3.1. Маловязкие гидравлических масел
Масло гидравлическое МГЕ-4А (ОСТ 38 01281-82) - глубо-коочищенная легкая фракция, получаемая гидрокрекингом из смеси парафинистых нефтей, загущенная вязкостной присадкой. Содержит ингибиторы окисления и коррозии. Обладает исключительно хорошими низкотемпературными свойствами.
Масло МГЕ-10А (ОСТ 38 01281-82) - глубокодеароматизированная низкозастывающая фракция, получаемая из продуктов гидрокрекинга смеси парафинистых нефтей. Содержит загущающую, антиокислительную, антикоррозионную и противоизносную присадки. Масло предназначено для работы в диапазоне температур от -(60-65) до +(70-75) °С.
Характеристики низкозастывающих маловязких гидравлических масел
Показатели | ЛЗ-МГ-2 | МГЕ-4А | РМ | РМЦ | МГ-7-Б | МГ-10-Б |
Кинематическая вязкость, мм2/с, при температуре: 50 °С |
>=4,0 | >=3,6 | 3,8-4,2 | >=8,3 | >=3,4 | >=8,3 |
-40 °С | - | - | <=350 | <=915 | <=350 | <=915 |
-50 °С | <=210 | <=300 | - | - | - | - |
Температура, °С: вспышки в закрытом (открытом) тигле, не ниже |
(92) | (94) | 125 | 125 | 120 | 120 |
застывания, не выше |
-70 | -70 | -60 | -60 | -60 | -60 |
помутнения, не выше |
- | - | -50 | -50 | -50 | -50 |
Кислотное число, мг КОН/г, не более |
0,03 | 0,4-0,7 | 0,02 | 0,02 | 0,02 | 0,02 |
Содержание, %: водорастворимых кислот и щелочей |
Отсут- ствие |
- | Отсутствие | |||
Плотность при 20 °С, кг/м3, не более |
840 | - | 845 | 845 | 845 | 845 |
Стабильность против окисления, показатели после окисления: массовая доля осадка, %, не более |
0,04 | Отсут- ствие |
0,05 | 0,05 | 0,05 | 0,05 |
кислотное число (изменение кислотного числа), мг КОН/г, не более |
0,2 | (0,15) | 0,09 | 0,09 | 0,09 | 0,09 |
Примечание. Для всех масел содержание воды и механических примесей - отсутствие. |
Масло АМГ-10 (ГОСТ 6794-75) - для гидросистем авиационной и наземной техники, работающей в интервале температур окружающей среды от -60 до +55 °С. Вырабатывается на основе глубокодеароматизированной низкозастываюшей фракции, получаемой из продуктов гидрокрекинга смеси парафинистых нефтей и состоящей из нафтеновых и изопарафиновых углеводородов. Содержит загущающую и антиокислительную присадки, а также специальный отличительный органический краситель.
Масло ЛЗ-МГ-2 (ТУ 38.101328-81) получают вторичной перегонкой очищенной керосиновой фракции из нефтей нафтенового основания. Содержит загущающую и антиокислительную присадки. Благодаря отличным низкотемпературным характеристикам используется в гидросистемах, обеспечивает быстрый запуск техники и работу при температурах до -60...-65 °С.
Характеристики низкозастывающих
гидравлических масел МГЕ-10А, ВМГЗ, АМГ-10
Показатели | МГЕ-10А | ВМГЗ | АМГ-10 |
Внешний вид | Прозрачная жидкость светло- коричневого цвета |
- | Прозрачная жидкость красного цвета |
Цвет, ед. ЦНТ, не более | - | 1,0 | - |
Кинематическая вязкость, мм2/с, при температуре: 50 °С, не менее |
10,0 | 10,0 | 10,0 |
-40 °С, не более |
- | 1500 | - |
-50 °С, не более |
1500 | - | 1250 |
Температура, °С: вспышки в открытом тигле, не ниже |
96 | 135 | 93 |
застывания, не выше |
-70 | -60 | -70 |
Кислотное число, мг КОН/г, не более |
0,4-0,7 | - | <=0,03 |
Стабильность против окисления, показатели после окисления: кинематическая вязкость, мм2/с, при температуре: 50 °С, не менее |
- | - | 9,8 |
-50 °С, не более |
- | - | 1500 |
кислотное число, мг КОН/г, не более |
- | - | 0,08 |
изменение кислотного числа, мг КОН/г, не более |
0,15 | - | - |
массовая доля осадка, %, не более |
Отсутствие | 0,05 | Отсутствие |
Изменение массы резины марки УИМ-1 после испытания в масле, % |
5,5-7,5 | 4-7,5 | - |
Индекс вязкости, не менее |
- | 160 | - |
Плотность при 20 °С, кг/м3, не более |
860 | 865 | 850 |
Примечание. Для всех масел содержание механических примесей и воды - отсутствие. |
Масла РМ, РМЦ (ГОСТ 15819-85) - дистиллятные масла, получаемые из нафтеновых нефтей, обладают улучшенными смазывающими свойствами. Применяют в автономных гидропри водах специального назначения, эксплуатируемых при температуре окружающей среды от -40 до +55 °С.
Масло МГ-7-Б (ТУ 38.401-58-101-92) - дистиллятное масло из продуктов гидрокрекинга смеси парафинистых сернистых нефтей, получаемое при вакуумной разгонке основы АМГ-10 и содержащее антиокислительную присадку.
Масло МГ-10-Б (ТУ 38.401-58-101-92) - дистиллятное масло из продуктов гидрокрекинга смеси парафинистых сернистых нефтей, получаемое из узкой фракции основы АМГ-10. Содержит вязкостную и антиокислительную присадки.
Масла МГ-7-Б и МГ-10-Б применяют в качестве низкозастывающих рабочих жидкостей и как заменители масел РМ и РМЦ.
Масло гидравлическое ВМГЗ (ТУ 38.101479-86) - маловязкая низкозастывающая минеральная основа, вырабатываемая посредством гидрокаталитического процесса, загущенная полиметакрилатной присадкой. Содержит присадки: противоизносную, антиокислительную, антипенную. Масло предназначено для систем гидропривода и гидроуправления строительных, дорожных, лесозаготовительных, подъемно-транспортных и других машин, работающих на открытом воздухе при температурах в рабочем объеме масла от -40 до +50 °С в зависимости от типа гидронасоса. Для северных регионов рекомендуется как всесезонное, а для средней географической зоны - как зимнее.
Кроме перечисленных гидравлических масел осваивается производство масел МГБ-10 и МГБ-15 (ТУ 0253-002-05766528-97).
3.2. Средневязкие гидравлические масла
Масло веретенное АУ
(ТУ 38.1011232-89) получают из малосернистых и сернистых парафинистых
29-04-2015, 00:58