Происхождение осадочных горных пород

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ………………………………………………………………………..3

ГЛАВА 1. СОСТАВ ОСАДОЧНЫХ ПОРОД……………………...……………4

1.1. Химический состав осадочных пород……………………………...……..4

1.2. Минеральный состав осадочных пород……………………………..……9

ГЛАВА 2. СТРОЕНИЕ ОСАДОЧНЫХ ПОРОД…………………………..…..15

2.1. Структура осадочных пород. Классификация сторон структур осадочных горных пород….…………………………………………………….15

ГЛАВА 3. ПРОИСХОЖДЕНИЕ ОСАДОЧНЫХ ГОРНЫХ ПОРОД…...……26

3.1. Виды зон осадконакопления……………………………………...………27

3.2. Анализ зоны осадконакопления………………………………….………31

ЗАКЛЮЧЕНИЕ………………………………………………………………….37

СПИСОК ЛИТЕРАТУРЫ……………………………………………………….38

ВВЕДЕНИЕ

Если глубокие недра литосферы почти всецело сложены магматическими породами, то поверхностная толща земной коры почти на 75% состоит из осадочных пород, хотя мощность их невелика. В некоторых местах она достигает всего несколько десятков или несколько сотен метров. Однако па отдельных участках земной коры, которые носят название областей прогиба или геосинклиналей, толща осадочных пород иногда достигает 15-20 км.

Осадочные породы образовались на поверхности литосферы в результате накопления минеральных масс, полученных в процессе разрушения магматических, метаморфических и осадочных горных пород. Процессы разрушения горных пород литосферы и накопления новых пород на поверхности Земли идут повсеместно: в пустынях, где энергичную работу ведет ветер; вдоль морских и океанических берегов, где волны перемещают обломочный материал; на дне глубоких частей морей и океанов, где отмирающие организмы дают начало толщам осадочных пород. Условия образования накладывают существенный отпечаток на облик осадочных пород. В одних случаях они состоят из обломков ранее разрушенных горных пород, в других - из скопления органических остатков, в третьих - из кристаллических зерен, выпавших из раствора.

Превращение осадка в горную породу называется диагенезом. Этот процесс заключается в оседании осадка, его накоплении, постепенном уплотнении, обезвоживании и кристаллизации.

ГЛАВА 1. СОСТАВ ОСАДОЧНЫХ ПОРОД

Осадочные породы – породы, существующие в термодинамических условиях, характерных для поверхностной части земной коры, и образующиеся в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трех процессов одновременно.

1.1. Химический состав осадочных пород

Химический состав осадочных пород весьма сложный, что отражает разнообразие осадочных пород. Он рассматривается по группам пород. Но можно попытаться представить средний состав всех осадочных пород, в который внесли бы свой вклад все осадочные породы пропорционально их Кларку, или среднему содержанию в осадочной оболочке Земли. Для запоминания средний химический состав осадочных пород лучше сравнивать с таковым магматических пород.

Средние химические составы магматических и осадочных пород почти полностью тождественны друг другу, особенно по главным, петрофильным (породообразующим) окислам: кремнезема 59,14 и 58,53% — по Ф. Кларку, или 61,69 и 62,20% — по У. Твенхофелу, К. Лейсу и У. Миду. Осадочные породы лишь на 0,5% менее кремнекислые, а по другим данным примерно на ту же величину более кислые, чем изверженные. В целом этот параметр свидетельствует о среднем (андезитовом) составе всех магматических и осадочных пород.

Глинозема в магматических породах около 15,4%, а в осадочных примерно 14%. Незначительное отличие — уменьшение на 1,0-1,5% — в осадочных породах скорее всего кажущееся, благодаря особенностям процентного (относительного) способа выражения содержания: к общему балансу состава прибавились новые компоненты осадочных пород, которые практически отсутствуют в магматических породах Н2О, СО2 и др.), и тогда содержания всех других компонентов уменьшаются на соответствующую долю этой прибавки, пропорциональную их содержанию в магматических породах. Поэтому и "уменьшается" содержание кремнезема, глинозема, соединений железа и других компонентов. Иначе пришлось бы допустить, что глинозем накапливается в гидросфере, т.е. рассеивается в осадочном процессе, что явно не свойственно ему и другим труднорастворимым компонентам.

Суммарное содержание окислов железа в магматических породах около 6,5%, а в осадочных около 5,5%, т.е. весьма близко, а уменьшение на 1 % также в основном кажущееся, хотя отчасти, возможно, действительно часть железа рассеивается в биосфере и гидросфере. Большие и показательные отличия видны в соотношениях трехвалентного (окисного) и двухвалентного (закисного) железа: в магматических породах преобладает второе, а в осадочных — окисное. Это четко указывает на преобладание окислительных условий и господство кислорода в атмосфере и гидросфере, по крайней мере с протерозоя. Однако и закисного железа в осадочных породах много, и это также есть в значительной мере результат влияния жизни: растения производят кислород, а отмершее органическое вещество восстанавливает большую часть трехвалентного железа в осадках до двухвалентного.

Окислов щелочноземельных элементов в магматических породах 8,5%, а в осадочных около 8 %, т.е. снова те же почти тождественные соотношения, свидетельствующие о круговороте одного и того же вещества Земли. Однако раздельное рассмотрение СаО и MgO снова показывает экзогенное, в основном биогенное разделение этих соединений: если в магматических породах преобладание СаО над MgO незначительное, то в осадочных породах оно более чем двукратное. Такое фракционирование химически сходных элементов не могло произойти чисто химическими способами. Накопление СаО в осадочных породах в значительно больших количествах по сравнению с магматическими породами (5,44% и 4,98 %) — результат связывания его в скелетах организмов. В противоположность биогенному СаО MgO не накапливается в телах организмов и их скелете в заметных количествах и далеко не весь освобожденный из силикатов осаждается химически. Значительная его часть рассеивается, пополняя соленость океана. Из него он осаждается только в немногих, аридных зонах в виде доломита и сульфатно-хлоридных солей.

Следующая пара элементов — щелочные окислы — составляет около 6,5-7% в магматических породах и только около 4% — в осадочных породах. Это явное рассеяние легко объяснимо с позиций седиментационных процессов: как легко растворимые они не осаждаются, а постоянно пополняют запасы хлоридных и сульфатных солей океана. Раздельное рассмотрение щелочей показывает резкое различие в седиментогенезе этих химических тождественных элементов.

В магматических породах их примерно поровну, натрия даже несколько больше (3,84 и 3,13%), а в осадочных породах соотношение резко меняется: калия почти в три раза больше, чем натрия (2,81% и 1,10%). И снова как бы антиэнтропийное поведение калия объясняется включением биогенного процесса осаждения. Но фиксация калия происходит и абиогенным процессом — глинистыми минералами, именно гидрослюдами (гидромусковитами, глауконитами). Натрий же в основном остается в гидросфере.

Принципиальным отличием химического состава осадочных пород от магматических является значительное (около 10%) содержание летучих компонентов, главным образом воды и СО2, практически не содержащихся в магматических породах. Они поступают в осадочные породы главным образом из атмосферы и гидросферы через биогенные минералы и органическое вещество, а также через гидратацию глинистых, окисных, сульфатных и других минералов. Это прибавка к тому веществу, которое получается в результате выветривания магматических пород, идущего не только с соблюдением закона сохранения вещества, но и с прибавлением его — примерно на 7%. Хотя количественно это только 1/10 часть трансформирующегося вещества, но его химическая и геохимическая роль глобальна, и оно участвует в судьбе и круговороте практически всего остального вещества горных пород. Оно подчеркивает специфику экзогенного породообразования — решающую энергетическую и материальную роль воды, живого и органического вещества вообще, без которого нельзя понять осадочное породообразование и которое резко отличает его от эндогенного.

Таким образом, сравнительное рассмотрение химического состава осадочных и магматических пород позволяет утверждать, что на основании большого их тождества нельзя сделать вывод о том, что осадочные породы являются в основном новообразованными, а не вторичными по отношению к магматическим. Но нельзя сделать и противоположный вывод: что магматические породы первичны. И те и другие на определенном витке круговорота вещества Земли являются первичными и вторичными по отношению друг к другу. Второй вывод заключается в том, что в химическом составе, в его деталях все же есть черты, отражающие специфику хемогенных превращений в осадочном процессе: гидратация, карбонатизация, окисление и т.д., а при еще более пристальном внимании можно заметить восстановление и некоторые другие химические процессы.

Если рассматривать химический состав осадочных пород на уровне элементов (таблица 1.), то легко заметить, что они наполовину (49,95% по весу (массе) и 58,50% по числу атомов) состоят из кислорода, что позволяет в известном смысле назвать их специфической газовой, кислородной оболочкой Земли.

Таблица 1

Средний химический состав осадочных пород по элементам (%) (по Л.В.Пустовалову, 1940)

Элементы

По массе (по Ф.Кларку)

По числу атомов (по А.Е.Ферсману)

Кислород

49,95

58,50

Кремний

27,55

18,20

Алюминий

6,93

4,79

Железо

3,90

1,31

Кальций

3.82

1,82

Калий

2,33

1,12

Углерод

2,01

3,13

Магний

1,52

1,16

Натрий

0,82

0,675

Водород

0,48

9,0

На втором месте — кремний (27,55% по массе), на третьем — алюминий (около 7%), далее — железо (около 4%), кальций (окаю 4%), калий (2,33%), углерод (2,01%) и магний (1,52%).

Интересно отметить, что натрия по массе всего 0,82%, а водорода, стоящего десятым в списке, — 0,48% по массе, но 9% по объему, точнее по числу атомов.

1.2. Минеральный состав осадочных пород

Более высокий, чем химический, минеральный уровень организации вещества позволяет уже в полной мере увидеть первичный, новообразованный характер подавляющего большинства осадочных пород, опровергающий еще бытующий у петрографов взгляд на них как на продукты разрушения магматических или других пород.

Все основные минералы и их группы (всего 18), слагающие магматические и осадочные породы, М.С. Швецовым даны по Твенхофелу (таблица 2.).

Уже чисто формально этот список можно разбить на четыре группы. Первая — темноцветные (оливин, пироксены, амфиболы, биотит) и основные плагиоклазы, вместе составляющие 31%; встречаются практически только в магматических породах, а в осадочных — в виде акцессориев, лишь изредка образуя пласты мощностью до 1 м.

Вторая группа — минералы железа и титана (магнетит, титанит, ильменит), а также кислые плагиоклазы и калиевые полевые шпаты, составляющие вместе 45% магматических пород; встречаются также и в осадочных породах, но в меньшем количестве (15,66%). Это минералы также магматические (как и первая группа), но в осадочных породах они имеют двойственное происхождение: во-первых, продукты разрушения магматических пород, т.е. остаточные, или реликтовые, во-вторых, и новообразованные, возникшие в осадочной оболочке: не только магнетит, но и титанит, и альбит, и калиевые полевые шпаты. Вероятно, это не меньше 4%, а если учитывать не вошедшие в подсчет огромные магнетитовые толщи джеспилитов докембрия первично-осадочного генезиса, то и до 7 %.

Таблица 2

Средний минеральный состав (%) магматических (М) и осадочных (О) пород

Минералы и их группы

М

О

1 .Оливин

2,65

Биотит

3,86

Роговая обманка

1,60

Авгит и другие пироксены

12,90

Анортит и другие основные плагиоклазы

9,80

-

2.Магнетит

3,15

0,07

Альбит

25,60

4,55

Таблица 2

Средний минеральный состав (%) магматических (М) и осадочных (О) пород

Минералы и их группы

М

О

Ортоклаз

14,85

11,02

3.Кварц

20,40

34,80

Мусковит,серицит, гидрослюды

3,85

15,11

4.Другие глинистые минералы

14,51

Железные осадочные минералы

4,00

Доломит, сидерит

9,07

Кальцит

4,25

Гипс и ангидрит

0,97

Фосфатные минералы

0,35

Органические минералы

0,73

Всего

100,11

99,45

Третья группа — кварц, мусковит и мусковитовые гидрослюды — также встречаются как в магматических, так и в осадочных породах, но в последних в значительно больших количествах — 50%. Большая их часть, не менее разности суммарных содержаний в обеих группах — 26%, является новообразованной.

Четвертая группа минералов свойственна практически только осадочным породам. Это глинистые, карбонатные, сульфатные, железные, алюминиевые, марганцевые, фосфатные, органические минералы, в сумме составляющие 34%. Они полностью новообразованные. Вместе с новообразованными минералами третьей группы (не менее 26%), и второй группы (не менее 5-7%) — новообразованных минералов в осадочных породах около 70%, возможно 75%.

Таким образом, осадочные породы состоят на 3/4 из минералов новообразованных, что показывает первичность большинства осадочных, являющихся не продуктами разрушения магматических или других пород, а результатом синтеза в новых термодинамических условиях, как бы в новой химической лаборатории.

Полный список минералов, встречающихся в осадочных породах, привести нельзя, так как это практически все минералы Земли, т.е. все реликтовые минералы, оставшиеся от магматических и метаморфических пород, и все новообразованные в зоне осадкообразования и стратисфере, т.е. осадочные минералы (Дир и др., 1965, 1966; Дэна и др., 1953, 1954; Минералы, 1-960-1967; Лазаренко, 1963; Теодорович, 1958). Среди них, кроме приведенных в табл. 2., сульфиды, силикаты цеолитовой, анальцимовой и других групп, минералы меди, алюминия, фтора и т.д. Основные породообразующие минералы, а их несколько сотен, описаны в соответствующих главах систематической части пород.

Осадочные минералы, часто называемые аутигенными, т.е. автохтонными, или рожденными на месте, в зоне осадкообразования или в осадочной оболочке Земли, характеризуются некоторыми общими свойствами, отличающими их от эндогенных. Хотя среди них обычны и высококристалличные, и даже гигантокристаллические минералы, все же их лицо определяют аморфные и микро-, скрыто- или полукристаллические минералы — глинистые, кремневые, железные, алюминиевые, фосфатные, марганцевые, органические. Второе общее свойство — гидратированность, причем вода в их составе разная, по разному связанная — гидроксильная конституционная, цеолитная, гигроскопическая и иная. В-третьих, они имеют переменный состав — не только связанный с переменным количеством воды, но и с изменчивым комплексом поглощенных катионов и других компонентов (адсорбированных редких и рассеянных элементов и др.). В них широко распространены изоморфизм и полиморфизм, что еще больше усложняет выделение минеральных видов и разграничение непрерывных серий, типичных для глинистых, карбонатных и других минералов. Осадочные минералы чаще магматических представлены в окисленной форме.

Все это весьма затрудняет минералогическое изучение осадочных пород, которые представляют "крепкий орешек" для распознания и выявления особенностей их структуры и состава. Поэтому осадочная минералогия вооружена гораздо большим арсеналом методов изучения, включая рентгеноструктурный, электронно-микроскопический, термический, люминесцентный, спектральный анализы и другие разнообразные методы химического анализа, инфракрасную спектроскопию и т.д. Осадочную минералогию можно сравнить с космосом или океаном, освоение которых еще впереди, и они в познании неисчерпаемы.

Следует отметить еще одну важную особенность осадочных минералов, сближающую их с живым веществом, — это способность реагировать на изменения окружающей среды, в чем можно видеть имитацию и как бы предвосхищение обмена веществ, составляющего сущность жизни. В наиболее сильной степени эта особенность проявляется в самых типичных и распространенных (их свыше 30% от всех минералов осадочных пород) глинистых минералах — алюмосиликатах слоистой кристаллической структуры, часто с подвижной кристаллической решеткой, способной обратимо раздвигаться или сжиматься многократно в зависимости от увеличения или уменьшения влажности, обладающей способностью катионного обмена со средой и другими минералами. Емкость поглощения у глин наибольшая из всех минералов и она разнообразна по природе: катионы и биполярные молекулы воды входят между слоями кристаллической решетки, поглощаются огромной (из-за их общей тонкой дисперсности) поверхностью глинистых частиц, а также чисто капиллярными силами.

ГЛАВА 2. СТРОЕНИЕ ОСАДОЧНЫХ ПОРОД

Строение пород — вторая (после минерального состава), петрографическая их сторона, в генетическом (информативном) отношении нередко становящаяся первой, главной. Строением определяются и многие физические, прочностные свойства пород и их массивов и толщ, а также фильтрационные и коллекторские свойства. Строение пород как понятие охватывает много важных и самостоятельных сторон, которые получили свои названия — термины: структура, текстура


29-04-2015, 01:04


Страницы: 1 2 3
Разделы сайта