Аппаратура спектрометрического каротажа СГК-1024

сцинтиллятора и пролета электронов между электродами ФЭУ, наличия паразитных емкостей в конструкции ФЭУ и входных каскадов усилителей, импульс напряжения, получаемый с системы «детектор+ФЭУ+усилитель» может быть описан некоторой функцией (в первом приближении гауссоидой). Амплитуда этого импульса, при сохранении неизменности вышеперечисленных параметров, будет пропорциональна энергии зарегистрированного гамма-кванта.

Токовый импульс с анода ФЭУ (7) поступает на вход преобразователя «ток-напряжение», с выхода импульс напряжения подается на соответствующие входы аналого-цифрового преобразователя. В результате преобразования на выходе блока преобразования «аналог-код» (6) появляется цифровой код, пропорциональный энергии, оставленной гамма-квантом в сцинтилляционном детекторе.

С выхода блока преобразования «аналог-код» (6) данные поступают на вход блока накопления амплитудно-временных спектров (5). Режим работы блока накопления спектров (6) определяется процессором блока памяти.

Таким образом, в приборе происходит накопление амплитудных спектров. Причем весь спектр занимает 256 ячеек памяти – 128 для «мягкой» области (каждый из первых 128 каналов 1024 канального спектра) и 128 для «жесткой» области. Каждый из 128 каналов спектра «жесткой» области содержит 8 каналов первичного 1024-канального спектра.

Передача накопленных спектров осуществляется по командам с блока центрального процессора (3), поступающим по линии последовательного интерфейса в блок накопления спектров (5). Связь скважинного прибора с бортовым компьютером поддерживает блок центрального процессора (3), выполненный традиционным образом, который по команде от наземного измерительного комплекса осуществляет выдачу в линию связи следующих информационных сигналов:

- количество зарегистрированных импульсов в каждом из 128 каналах мягкой части спектра СГК (128 слов),

- количество зарегистрированных импульсов в каждом из 128 каналов жесткой части спектра СГК (128 слов),

- температуру в блоке электроники скважинного модуля (два слова),

- температуру в блоке детектирования скважинного модуля либо показания одноосного акселерометра (одно слово),

- технологические параметры канала СГК (4 слова).

По отдельному запросу дополнительно выдается «электронный» номер прибора, дата прошивки программного обеспечения и его версия.


4. Подготовка аппаратуры к работе

4.1 Методика калибровки

Калибровка аппаратуры СГК-1024 осуществляется аккредитованными метрологическими службами геофизического предприятия в соответствии с прилагаемой к комплекту аппаратуры инструкцией, в которой регламентированы условия, средства и операции калибровки, описана методика определения метрологических параметров аппаратуры.

Калибровка осуществляется при вводе аппаратуры в эксплуатацию и периодически один раз в квартал в процессе эксплуатации, а также после смены детектора гамма-излучения или ремонта механических узлов зондового устройства аппаратуры. Данные калибровки являются основанием для оценки качества и проведения количественной интерпретации результатов каротажа.

Сопроводительная документация на аппаратуру СГК-1024 должна содержать сведения о первичной калибровке.

Базовая калибровка аппаратуры

Базовая калибровка аппаратуры выполняется с целью:

- контроля параметров аппаратуры;

- выставления энергетической шкалы;

- определения метрологических характеристик аппаратуры;

- проверки диапазона измерений и определения относительной основной погрешности, вносимой аппаратурой при измерении массовых содержаний тория, урана и калия;

- записи калибровочных данных в файл базовой калибровки для использования на этапах полевой калибровки, регистрации и обработки результатов измерений.

Базовая калибровка аппаратуры СГК-1024 выполняется на ГСО-ЕРЭ либо аттестованных калибровочных устройствах (УК-СГК) [6], обеспечивающих подобие регистрируемых в них спектров спектрам, регистрируемым в скважинных условиях. Калибровка выполняется в соответствии с инструкцией по калибровке, а также документацией на программу базовой калибровки аппаратуры.

В качестве образцовых средств массовых содержаний тория СTh , урана СU и калия СK в установке УК-СГК используются пять калибровочных емкостей специальной конструкции. Значения воспроизводимых ими массовых содержаний тория, урана и калия должны обеспечивать получение калибровочных спектров, пригодных для использования в программах обработки, а также проверку диапазона измерений и определения систематической (DСTh , DСU , DСK либо dСTh , dСU , dСK ) и среднеквадратической случайной (dС СTh , dС СU , dС СK ) погрешностей:

где , и средние значения параметров СTh , СU и СK равные, соответственно, и К0 – число отсчетов, СTh пасп , СU пасп и СКпасп – паспортные значения массовых концентраций тория, урана и калия в калибровочном устройстве.

В табл. 6 приведены требования к метрологическим характеристикам аппаратуры СГК-1024.

Результат базовой калибровки записывается в файл базовой калибровки с указанием даты ее проведения и параметров использованного оборудования (номера прибора, типа и номера калибровочной установки и др.).

Кроме того, создается протокол базовой калибровки прибора, рекомендуемая форма которого приведена в Приложении 1.

Таблица 6 – метрологические характеристики аппаратурно-измерительного комплекса СГК-1024 и требования к их значениям

Наименование характеристик Требования к характеристикам
1. Систематическая составляющая погрешности измерений:

Th , ppm(при СTh ³20 ppm, % отн.)

U , ppm(при СU ³20 ppm, % отн.)

К , % абс (при СK ³5%, % отн.)

не более 2 (не более 10)

не более 2 (не более 10)

не более 0.3 (не более 10)

2. Среднеквадратическая случайная составляющая погрешности измерений

dС СTh , % отн. при СTh ³20 ppm

DС СTh , ppm при СTh < 20 ppm

dС СU , % отн. при СU ³20 ppm

DС СU , ppm при СU < 20 ppm

dС СК , % отн. при СК ³5.0%

DС СК , % абс. при СК < 5.0%

не более 5

не более 1.0

не более 5

не более 1.0

не более 5

не более 0.25

Для расчета погрешностей определения массовых содержаний ЕРЭ на нижней границе диапазона измерений используются результаты измерений в ПКУ-ЕРЭфон.

Для расчета погрешностей определения массовых содержаний ЕРЭ на середине диапазона измерений используются результаты измерений в ПКУ-ЕРЭсмесь.

Полевая калибровка аппаратуры

Полевая калибровка аппаратуры выполняется перед проведением каротажа в скважине в интервале с повышенной гамма-активностью породы с целью:

- установления ее работоспособности;

- контроля (либо выставления) энергетической шкалы аппаратуры в соответствии с энергетической шкалой при базовой калибровке;

- регистрации опорного спектра для последующего использования его при автоматической привязке энергетической шкалы спектрометра в процессе каротажа.

Полевая калибровка аппаратуры СГК-1024 является обязательным этапом при выполнении каротажа. Полевая калибровка выполняется в соответствии с инструкцией на аппаратуру, а также документацией на программу полевой калибровки аппаратуры.

Данные полевой калибровки должны быть доступны при обработке материалов каротажа.

4.2 Характеристика программного обеспечения аппаратуры

В состав аппаратуры СГК-1024 входит набор программных средств, поддерживающий всю технологическую цепочку эксплуатации аппаратуры от ее первичной настройки при ремонте и изготовлении до получения исправленных за влияние скважинных условий измерений геофизических параметров – массовых содержаний тория СTh , урана СU и калия СK в породе. Характеристика программных средств первичной обработки данных СГК-1024 приведена в разделе 6. Программные средства настройки, тестирования, калибровки и регистрации данных аппаратуры СГК-1024 привязаны к регистрирующему оборудованию. Комплектность и тип поставляемого программного продукта настройки, тестирования и др. определяются заказчиком.

Программное обеспечение настройки аппаратуры СГК-1024Т используется при выполнении ремонтных работ на базе и предназначено для проведения:

- настройки спектрометрического тракта аппаратуры;

- настройки приема сигналов и параметров опроса прибора;

- цифрового и графического просмотра принимаемой информации;

- настройки и записи технологических параметров канала СГК;

- чтения и просмотра «электронного» номера прибора, версии программного продукта и даты его прошивки в прибор;

- записи регистрируемой информации в файл (например, при испытаниях аппаратуры на термостабильность).

Программное обеспечение тестирования, полевой калибровки и регистрации данных аппаратуры СГК-1024 предназначено для операторского состава и эксплуатируется при проведении каротажных работ, обеспечивая:

- настройку приема сигналов и параметров опроса прибора;

- цифровой и графический просмотр принимаемой информации;

- чтение и просмотр «электронного» номера прибора, версии программного продукта и даты его прошивки в прибор;

- проведение полевой калибровки аппаратуры с целью установления ее работоспособности и выставления энергетической шкалы; результат полевой калибровки документируется в файл и доступен для анализа при обработке и контроле качества выполненного каротажа;

- проведение каротажа с автоматической корректировкой энергетической шкалы аппаратуры и расчетом геофизических параметров в реальном масштабе времен.

Подробное описание этих программных продуктов поставляется вместе с технической документацией на аппаратуру в соответствии с условиями ее эксплуатации (с используемыми регистрирующими средствами).


5. Подготовительные работы партии на базе и на скважине

скважинный прибор плата аппаратура

Подготовительные работы перед проведением ГИС проводят на базе геофизического предприятия и непосредственно на скважине. Перечень работ каротажной партии, проводимых на базе, включает:

А) получение наряд заказа на ГИС

Б) ознакомление с геофизическими и геологическими материалами по скважине, получение твердых копий или файлов данных, необходимых для выполнения ряда работ при ГИС.

В) получение скважинных приборов расходных деталей, материалов, проверка комплектности и исправности.

Г) запись файлов периодических калибровок и сведений об исследуемом объекте в базу данных каротажного регистратора.

Д) оформление необходимой документации на водителей, технику

Е) проверка исправности спускоподъемного оборудования

По прибытию на скважину каротажная партия выполняет следующие подготовительные операции:

1) Производит проверку готовности скважины к ГИС согласно техническим условиям на их подготовку, и подписывают акт готовности скважины к проведению ГИС

2) Проверяют правильность задания, указанного в наряд заказе, и при необходимости уточняют его у с представителем заказчика

3) Устанавливают каротажный подъёмник в 25–40 метрах от устья скважины так, чтобы ось лебёдки была горизонтальной и перпендикулярной направлению на устье скважины, затормаживают и надёжно закрепляют подъёмник, путём подкладывания под колёса тормозных колодок (башмаков), крепят датчики натяжения, глубины, устанавливают направляющие и подвесные ролики, заземляют каротажный подъёмник, производят размотку кабеля, выполняют подключение станции к сети переменного тока.

4) Сматывают с барабана лебёдки первые витки кабеля так, чтобы его хватило для подключения к прибору, переносят скважинные приборы к устью скважины, заводят кабель в направляющий и подвесной ролики, устанавливают на направляющий ролик сельсин-датчик (датчик глубины);

5) Подсоединяют к кабельному наконечнику первый скважинный прибор, проверяют его работоспособность и производят спуск на заданную глубину. Перед спуском устанавливают на счётчиках регистратора и панели контроля каротажа нулевые показания глубин.


6. Проведение геофизических исследований и работ

Регистрируемые параметры

Аппаратура СГК-1024 обеспечивает регистрацию следующих параметров:

- поток гамма-излучения естественной активности пород на детекторе канала СГК (скоростей счета в энергетических окнах);

- температура внутри прибора;

- показания одноосного акселерометра;

- технологические параметры канала СГК.

Расчетными параметрами являются естественная гамма-активность пород в единицах МЭД либо ЭМДУ и массовые содержания тория, урана и калия в породе.

Дискретность данных по глубине, скорость каротажа

Дискретность записи данных по глубине и скорость каротажа определяются мощностью пласта hmin , подлежащего количественной обработке [5].

Дискретность регистрации данных по глубине должна обеспечивать не менее 5 точек на пласт, подлежащий количественной обработке.

Скорость каротажа должна обеспечивать величину случайной погрешности, приведенной к пласту регламентированной мощности, не более 6% при общих (hmin =3¸4 м) исследованиях и не более 5% при детальных (hmin =1¸2 м) исследованиях по каналу интегрального ГК и не более величины основной относительной погрешности по каналам тория, урана и калия. Для выполнения этих требований скорость каротажа при общих исследованиях не должна превышать 140¸180 м/ч в активном (терригенном) разрезе (JГК >4¸5 мкР/ч) и 110¸150 м/ч в низкоактивном (карбонатном) разрезе (JГК <4¸5 мкР/ч). При детальных исследованиях скорость не должна превышать, соответственно, 80¸120 м/ч и 60¸100 м/ч.

Повышение детальности исследований достигается уменьшением шага дискретизации по глубине при одновременном пропорциональном снижении скорости каротажа. Рекомендуемые значения выбираются из ряда 5, 10, 20 см.

Порядок работы на скважине

Измерения на скважине проводятся в соответствии с технологической схемой, обеспечиваемой используемым регистратором, при выполнении следующих операций:

- развертывание аппаратуры, ее включение, настройка и проверка работоспособности;

- прогрев аппаратуры в течение 10¸15 минут (эта операция обычно совмещается со спуском в скважину);

- спуск прибора в скважину в интервал с повышенной активностью; скорость спуска не должна превышать 5000 м/час;

- проведение полевой калибровки канала СГК; при работе в связке с аппаратурой нейтронного каротажа следует учитывать возможность активации породы и элементов конструкции скважины нейтронами, а потому полевая калибровка должна в этом случае выполняться вне интервала записи;

- доставка прибора в интервал каротажа;

- проведение каротажа с повторением интервала (не менее 50 м) с наибольшей дифференциацией либо интервала, представляющего наибольший интерес; скорость записи при проведении повторного замера должна соответствовать скорости записи основного замера;

- редактирование записи (при выявлении брака записи исследования выполняются повторно);

- выключение прибора, подъём и извлечение прибора из скважины; подъем прибора вне интервала исследования ведется со скоростью не более 5000 м/час;

- свертывание аппаратуры.

При спуске прибора в скважину и проведении каротажа обязательному контролю (дополнительно к [5]) подлежат стабильность приема данных (количество сбоев по приему данных не должно превышать 1 на 10 метров записи) и параметров питания аппаратуры. При проведении каротажа дополнительно следует визуально контролировать качество стабилизации энергетической шкалы – характерные пики текущего регистрируемого спектра и спектра полевой калибровки не должны расходиться более чем на 4¸6 каналов (см. рис. 4).

а)

б)

Рис. 5. Аппаратура СГК-1024Т – визуализация режима измерений

a) – пример правильной настройки энергетической шкалы спектрометра; б) – пример неправильной настройки энергетической шкалы спектрометра.


Красным цветом показан спектр базовой калибровки, синим – текущий зарегистрированный спектр.

Оформление и контроль качества измерений

Редактирование результатов каротажа является обязательным этапом, выполняемым оператором на скважине после завершения измерений данным (очередным) прибором. Этап редактирования обеспечивает увязку данных по магнитным меткам и точкам записи, а также подготовку файла для проведения контроля качества каротажа. Основные положения контроля качества измерений регламентируются технической инструкцией [5], в соответствии с которой качество характеризуется тремя оценками – «хорошо», «удовлетворительно», «брак». Бракованные материалы к обработке не допускаются.

Кроме общих положений инструкции [5] дополнительно контролируются следующие параметры. В интервале перекрытия проводится расчет относительных систематической d и полной случайной dсл погрешностей, приведенных к пласту регламентированной толщины :

,

,

Рекомендуется рассчитываемые значения d и dсл приводить к пласту толщиной H=2, 5 или 10 м. При этом должны выполняться следующие требования. Расхождение между массовыми содержаниями, определенными по основному и повторному замерами (систематические погрешности ), для урана и тория по интервалам не менее 5 м не должно превышать ±2 ppm для общих и ±1.5 ppm для детальных исследований. Соответствующая погрешность определения калия не должна превышать 0.3% для общих исследований и 0.2% для детальных. Полные случайные погрешности определения урана и тория в тех же условиях не должны превышать ±2.5 ppmи ±1.5 ppm, соответственно [5, 7], а калия – ±0.2%.

В интервале контрольных измерений СГК толщины и конфигурации пластов должны соответствовать значениям ранее выполненных исследований.

Общие требования к составу и форматам передаваемой заказчику документации определяются [5], дополнительные – соответствующими соглашениями заказчика и исполнителя работ.

Рекомендуемые форматы вывода калибровочных данных и результатов каротажа на твердых копиях для аппаратуры СГК-1024 приведены в табл. 1, 2 и на рис. 5.

Рис. 6. Рекомендуемый формат вывода результатов каротажа на твердую копию для аппаратуры СГК-1024


Заключение

В данной курсовой работе рассмотрена методика выполнения измерений и обработку результатов измерений при проведении спектрометрического гамма каротажа аппаратурой СГК-1024Т и СГК-1024Т-2Т. Под аппаратурой СГК понимается информационно-измерительный комплекс, обеспечивающий измерение массовых содержаний тория СTh , урана СU и калия СK , а также естественной активности пород методом спектрометрического гамма-каротажа. Аппаратура СГК-1024 предназначена для исследования необсаженных и обсаженных нефтяных и газовых скважин.

В курсовой работе приведены физические основы метода, технические характеристики аппаратуры, изложены методики калибровки, проведения каротажа и обработки результатов измерений.

Аппаратура СГК-1024 предназначена для проведения спектрометрического гамма-каротажа естественной радиоактивности породы с получением массовых содержаний тория СTh , урана СU и калия СK . Аппаратура выпускается в обычном (120°С, 80 МПа, СГК-1024Т) и термобаростойком (175 °С, 140 МПа, СГК-1024Т-2Т) исполнениях. В зависимости от условий применения и требований к точности измерений допустимая скорость каротажа изменяется в пределах 50¸200 м/час.

Курсовая работа написана по данным научно-исследовательских и опытно-методических работ и содержит сведения, необходимые для ознакомления с технологией производства работ аппаратурой СГК-1024, а именно: проведения базовой и полевой калибровок, настройки аппаратуры перед каротажем, выполнения работ в скважине. Подробное описание перечисленных выше элементов технологии работ с аппаратурой СГК-1024 поставляется вместе с программным обеспечением, реализующим соответствующий технологический этап.


Список использованной литературы

1. Справочник по радиометрии. – Госгеолтехиздат, M., 1957.

2. Фертл В.Х. Cпектрометрия гамма-излучения в скважине. – Нефть, газ и нефтехимия за рубежом, 1983, №3, 4, 5, 6, 8, 10, 11.

3. Кожевников Д.А. Гамма-спектрометрия в комплексе геофизических исследований нефтегазовых скважин. – Методическое пособие. M.: ГАНГ, 1996.

4. O. Serra, J. Baldwin, J. Quirein – Theory, interpretation and practical applications of natural gamma ray spectroscopy. SPWLATwenty-FirstAnnualLoggingSymposium, July 8–11, 1.

5. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. – М., 2001 г.

6. Велижанин В.А., Головацкий С.Ю., Саранцев С.Н., Черменский В.Г. и др. Cпектрометрический гамма-каротаж естественной активности пород: аппаратура, метрология, интерпретационно-методическое и программное обеспечения. – Каротажник, №93, г. Тверь, 2002 г.

7. Аппаратура спектрометрического гамма-каротажа. Параметры, характеристики, требования. Методы контроля и испытаний. СТ ЕАГО-086–01. М., 2002.

8. Пакет программ первичной обработки каротажных данных – LogPwin. Руководство пользователя. ООО «Нефтегазгеофизика», Тверь, 2003.

9. Черменский В.Г., Велижанин В.А., Хаматдинов Р.Т., Саранцев С.Н. Способ спектрометрического гамма-каротажа и устройство для его проведения - патент RU 219413


29-04-2015, 00:31


Страницы: 1 2 3
Разделы сайта