Газлифтный способ добычи нефти

основаны на применении реагентов, препятствующих отложению солей на поверхности промыслового оборудования. В практике нефтедобычи за рубежом этот метод является основным. Как показал опыт зарубежной и отечественной нефтедобывающей промышленности, применение химических реагентов позволяет получить качественную и продолжительную защиту оборудования от солеотложения при сравнительно небольших затратах.

Все известные ингибиторы отложения минеральных солей можно подразделить на две большие группы:

однокомпонентные, представленные определенным типом химического соединения;

многокомпонентные, составленные из различных химических соединений.

Многокомпонентные ингибирующие композиции готовят из двух и более компонентов и условно подразделяют на две большие подгруппы:

составы, в которых один из компонентов не является ингибитором отложений солей. Кроме ингибитора такие составы содержат поверхностно-активное вещество неионогенного типа, которое или усиливает действие ингибирующей добавки, или имеет другое самостоятельное значение, но не ухудшает при этом действия ингибирующего компонента;

составы, в которых все компоненты являются ингибиторами отложений солей.

Большую группу ингибирующих препаратов составляют композиции, содержащие в качестве ингибитора отложений минеральных солей конденсированные полифосфаты, производные полиакриловой кислоты, фосфоновые кислоты, многоатомные спирты, эфиры фосфоновой кислоты, серосодержащие соединения.

В зависимости от механизма действия ингибиторы солеотложения делятся в основном на три типа.

Хелаты - вещества, способные связывать ионы кальция, бария или железа и препятствовать их реакции с ионами сульфата и карбоната. Высокая эффективность от применения этих веществ может быть получена при дозировке их в стехиометрических количествах. При больших значениях перенасыщения применение этих ингибиторов экономически не оправдывается.

Ингибиторы "порогового" действия - вещества, добавление которых в минимальных количествах в раствор препятствует зарождению и росту кристаллов солей и, следовательно, накоплению их на поверхности оборудования.

Кристаллоразрушающие ингибиторы не препятствуют кристаллизации солей, а лишь видоизменяют форму кристаллов.

В настоящее время установлены требования к физико-химическим характеристикам ингибиторов солеотложений. Важнейшее из них -высокая эффективность ингибирования процессов отложения солей, низкая температура замерзания (до минус 50 °С), низкая коррозионная агрессивность, малая токсичность, совместимость с пластовыми водами, отсутствие отрицательного влияния на процессы подготовки нефти, способность хорошо адсорбироваться и медленно десорбироваться с породы пласта.

Технология применения ингибиторов солеотложения

Эффективность предупреждения отложения солей зависит не только от ингибитора, но и от технологии его применения. Независимо от типа ингибитора и механизма его действия положительные результаты могут быть лишь при условии постоянного присутствия реагента в растворе в минимально необходимых количествах. При этом наилучшие результаты достигаются при вводе ингибитора в раствор до начала кристаллизации неорганических солей.

Ингибиторы отложения солей в зависимости от условий могут применяться по способу:

непрерывной дозировки в систему с помощью дозировочных насосов или специальных устройств;

периодической закачки раствора ингибитора в скважину с последующей задавкой его в призабойную зону пласта как с подъемом скважинного оборудования, так и без его подъема;

периодической подачи раствора ингибитора в затрубное пространство скважины.

На скважинах последовательно могут осуществляться различные способы подачи ингибитора: вначале периодическая закачка; затем через 2-6 мес. для предупреждения отложений солей в скважинном оборудовании непрерывная дозировка или периодическая подача раствора ингибитора в затрубное пространство скважины.

При подаче реагента необходимо контролировать дебит скважины по жидкости, обводненность добываемой продукции, а также вести наблюдения за режимом работы скважины и оборудования, систематически определять химический состав попутно добываемых вод и содержание в них ингибиторов солеобразования.

4. Методы удаления НОС

Удаление солей, отложившихся в скважинах и на поверхности нефтепромыслового оборудования, является серьезной проблемой и остается одной из наиболее трудоемких и малоэффективных работ. Эффективность действия удалителей и их выбор зависят от конкретных условий каждого месторождения, в частности от состава отложений неорганических солей. В настоящее время нет еще универсальных методов, которые могли бы обеспечить удаление или полное предупреждение отложений неорганических солей любого состава. Поэтому в каждом конкретном случае, в зависимости от состава солевых отложений, необходимо выбирать соответствующие методы и реагенты для их удаления с тем, чтобы обеспечить наибольшую эффективность проводимых обработок.

Удаление солеотложений требует больших затрат времени и средств. Методы удаления отложений солей из скважин можно подразделить на механические и химические.

Сущность механических методов удаления отложений заключается в проведении очисток скважин путем разбуривания мощных солевых пробок или путем проработки колонны расширителями, скребками с последующим шаблонированием. Положительный эффект достигается в том случае, если интервал перфорации не перекрыт солевыми осадками. Если фильтрационные каналы перекрыты отложениями солей, то необходимо проводить повторную перфорацию колонны. Механические очистки являются дорогостоящими мероприятиями, поэтому в настоящее время наибольшее распространение получили химические методы удаления отложений.

Сущность химических методов удаления отложений солей заключается в проведении обработок скважин реагентами, эффективно растворяющими неорганические соли.

5. Снижение пускового давления

Среди различных методов снижения пусковых давлений, основанных на удалении части жидкости из подъемной колонны, наиболее эффективно применение пусковых газлифтных клапанов, которые устанавливают в скважинных камерах ниже статического уровня жидкости. По способу управления газлифтные клапаны работают от давления в затрубном пространстве, давления столба жидкости в НКТ и перепада давления между ними.

Наибольшее распространение получили клапаны, управляемые затрубным давлением сильфонного типа серии Г и выпускаемые с условным наружным диаметром 20, 25, 38 мм с диапазоном давления зарядки 2-7 МПа.

Газлифтные клапаны Г состоят из устройства для зарядки, сильфонной камеры, пары шток - седло, обратного клапана и устройства для фиксации клапана в скважинной камере.

Сильфонная камера заряжается азотом через золотник. Давление в сильфонной камере клапана регулируют на специальном приспособлении стенда СИ-32. Сильфонная камера -герметичный сварной сосуд высокого давления, основным рабочим органом которого является металлический многослойный сильфон. Пара шток — седло является запорным устройством клапана, к которому газ поступает через окна кармана скважинной камеры.

Герметизация напора поступления газа обеспечивается двумя комплектами манжет. Обратный клапан предназначен для предотвращения перетока жидкости из подъемных труб в затрубное пространство скважины.

Газлифтные клапаны Г по назначению делятся на пусковые и рабочие.

Управляющим давлением для пусковых клапанов является давление газа затрубного пространства скважины. Воздействуя на эффективную площадь сильфона, газ сжимает его, в результате чего шток поднимается, и газ, открывая обратный клапан, поступает в подъемные трубы.

Число устанавливаемых клапанов зависит от давления газа в скважине и ее глубины. Закрываются они последовательно по мере снижения уровня в затрубном пространстве скважины.

Понижение уровня в затрубном пространстве скважины продолжается до глубины расположения нижнего (рабочего) клапана.

На заданном технологическом режиме скважина должна работать через рабочий клапан при закрытых верхних (пусковых) клапанах, которые используются только в период пуска скважины.

Другим типом используемых клапанов является дифференциальный тип (КУ-25 и КУ-38), т.е. работающие от перепада давления в НКТ и затрубном пространстве.

Применение газлифтных клапанов позволяет регулировать поступление газа, нагнетаемого из кольцевого пространства в колонну подъемных труб.

6. Техника безопасности при эксплуатации газлифтных скважин

Устье газлифтной скважины оборудуют стандартной фонтанной арматурой на рабочее давление, равное максимальному, ожидаемому на устье скважины. Арматуру до установки на скважину опрессовывают в собранном виде на паспортное пробное давление. После установки на устье скважины ее опрессовывают на давление для опрессовки эксплуатационной колонны; при этом, независимо от ожидаемого рабочего давления, арматуру монтируют с полным комплектом шпилек и уплотнений. Ее выкидные и нагнетательные линии, расположенные на высоте, должны иметь надежные опоры, предотвращающие падение труб при ремонте, а также их вибрацию при работе скважин.

Обвязка скважины, аппаратуры и газопроводов под давлением в зимнее время должна отогреваться только паром или горячей водой.

В газораспределительных будках следует не допускать скопления газа, который при определенном соотношении с воздухом образует взрывоопасную смесь. Газ обычно скапливается вследствие пропуска его через фланцевые соединения или сальники вентилей. Во избежание поступления газа из скважины по трубопроводу в БГРА должен быть установлен обратный клапан.

Скопление взрывоопасной смеси особенно недопустимо в зимнее время, когда окна и двери газораспределительных будок закрыты. В зимнее время также могут образовываться гидратные пробки вследствие замерзания конденсата в батареях и газопроводах. Это приводит к повышению давления в трубопроводах и возможному их разрыву. Попадание газа в воздух может быть причиной взрыва. Основная мера, предотвращающая взрыв, - вентиляция помещения. Для устранения утечки газа на линии следует постоянно следить за исправностью сальниковых набивок вентилей, сосудов для конденсата (на газопроводных магистральных линиях в низких точках).

В зимнее время следует утеплить помещения для предотвращения от замерзания конденсата в батареях.

Для устранения источников воспламенения газа в будках необходимо:

использовать электрическое освещение будок, установленное вне будок;

выносить за будку электроприборы (рубильники, печи);

применять инструмент, не дающий искр, при ремонте внутри будок;

запретить применение открытого огня и курение в будке;

сооружать будку из огнестойкого материала.

7. Обслуживание газлифтных скважин

Обслуживание газлифтных скважин включает исследование газлифтных скважин, анализ их работы и устранение неисправностей газлифтнои установки.

Целью исследования является определение параметров пластов, пластовых жидкостей и призабойной зоны для оценки рационального расхода рабочего агента (газа) по критерию максимума добычи нефти или минимума удельного расхода газа.

Основной метод исследования газлифтных скважин — метод пробных откачек. Забойное давление при этом определяется глубинным манометром или расчетом по давлению нагнетаемого газа.

Осложняющие условия эксплуатации газлифтных скважин требуют проведения необходимых оргтехмероприятий.

Для борьбы с пескопроявлением используют:

фильтры для закрепления призабойной зоны;

ограничение депрессии для предотвращения разрушения скелета нефтесодержащих пород;

конструкции подъемных лифтов и режимы их работы, при которых обеспечивается полный вынос песка.

Для борьбы с парафином, гидратами, солеотложением, образованием эмульсии, несмотря на повышенную металлоемкость установки, иногда используют второй ряд НКТ, что позволяет закачивать в кольцевое пространство между ними растворители и химреагенты без остановки скважины.

Образование ледяных и гидратных пробок в скважинах и негерметичностях лифта устраняют следующими методами:

устранением негерметичности лифта и уменьшением перепада давления на клапане;

вводом ингибитора в нагнетаемый газ;

подогревом газа; снижением давления при прекращении подачи газа на скважину.

СПИСОК ЛИТЕРАТУРЫ.

1. Справочник по добыче нефти/В.В. Андреев, К.Р. Уразаков, В.У. Далимов и др.; Под ред. К.Р. Уразакова. 2000. - 374 с.: ил.

2. Персиянцев М.Н. Добыча нефти в осложненных условиях.

3.Басарыгин Ю.М., Булатов А.И., Проселков Ю.М.

Заканчивание скважин 2000г.

4.Уразаков К.Р., Богомольный Е.И., Сейтпагамбетов Ж.С., Назаров А, Г.

Насосная добыча высоковязкой нефти из наклонных и обводненных скважин/Под ред. МД. Валеева. - М.: ООО "Недра-Бизнесцентр", 2003.

5. Булатов А.И., Качмар Ю.Д., Макаренко П.П., Яремийчук Р.С. Освоение скважин: Справочное пособие / Под ред. Р.С. Яремийчука. - М.: ООО "Недра-Бизнеспентр", 1999.

6.Газизов А.Ш., Газизов А.А. Повышение эффективности разработки нефтяных месторождений на основе ограничения движения вод в пластах. - М.: ООО "Недра-Бизнесцентр", 1999.

7. Лысенко В.Д., Грайфер В.И.

Разработка малопродуктивных нефтяных месторождений. 2001.

8.Желтов Ю.П. Разработка нефтяных месторождений: Учеб. для вузов. - 2-е изд., перераб. и доп. - М.: ОАО "Издательство "Недра", 1998.

9.Басарыгин Ю.М. , Будников В.Ф., Булатов А.И.

Теория и практика предупреждения осложнении и ремонта скважин при их строительстве и эксплуатации: Справ. пособие: в 6 т. -

М.: ООО "Недра-Бизнесцентр", 2001.




29-04-2015, 00:31

Страницы: 1 2
Разделы сайта