Среди пегматитовых месторождений выделяются три генетических класса: простые пегматиты; перекристаллизованные пегматиты; метасоматически замещенные пегматиты. Простые пегматиты сложены калий-натровыми полевыми шпатами и кварцем с небольшой примесью слюды. Эти пегматиты разрабатываются для получения комплексного керамического сырья и используются для производства низших сортов изделий фаянсовой и фарфоровой промышленности (Куру-Ваара Мурманской обл.). Такие пегматиты называются также керамическими пегматитами. Пегматиты характеризуются сложной морфологией жильных тел мощностью до нескольких десятков метров и длиной до 800-1000м и более, отличаются достаточно постоянным составом, обеспечивающим хорошее обогащение, являются основным источником низкокалиевых полевошпатовых материалов. Иногда в составе пегматитов встречаются крупные блоковые обособления кварца и микроклина (Рис. 5 Сечение простого пегматита).
Рис. 5. Сечение простого пегматита:
1 – кварцевое ядро; 2 – пегматит письменный структуры; 3 – слюдяная оторочка; 4 – гранит.
Перекристаллизованные пегматиты, как правило, имеют разнозернистую крупно- и гигантозернистую структуру. Такая структура могла сформироваться в результате перекристаллизации исходного вещества жил под влиянием горячих газово-жидких растворов, химический состав которых находился в равновесии с составом ранее выделившихся пегматитообразующих соединений . При перекристаллизации калиевого полевого шпата при гидролизе формируется мусковит (Рис. 6). Из перекристалллизованных пегматитов добывают мусковит (месторождения Чупино-Лоухского района Карелии, Мамского района Иркутской обл.), попутно добывают полевошпатовое сырье, кварц. За границей основными центрами добычи мусковита являются пегматитовые поля Индии и Бразилии. Крупнолистовой мусковит добывается только из пегматитов. По характеру распределения мусковита в жильном теле выделяют жилы с равномерным, зональным и гнездовым распределением. В связи с исключительной значимостью этих пегматитов они называются мусковитовыми пегматитами.
Рис. 6. Сечение перекристаллизованного пегматита жилы 4 Слюдяногорского месторождения. По Г. Кулешову и др. 1 – гнейсы; 2 – среднезернистые пегматиты; 3 – кварц; 4 – мусковит.
Метасоматически замещенные пегматиты в отличие от ранее рассмотренных отличаются перекристаллизацией и метасоматической переработкой в различной степени под воздействием горячих минерализованных растворов, химически неравновесных по отношению к составу первичной пегматитообразующей минеральной массы. Для этого класса характерно наиболее полное зональное строение с метасоматическими преобразованиями и грейзенизацией (Рис. 7). Эти два процесса сопровождаются появлением минералов редких металлов, горного хрусталя, драгоценных камней. Из метасоматически замещенных пегматитов добывают оптический флюорит, драгоценные камни, руды лития, бериллия, цезия, рубидия, реже олова, вольфрама, тория, урана, ниобия, тантала, редких земель. Редкометальная и редкоземельная минерализация в пегматитах вне зависимости от генетической принадлежности их к определенной формации считается метасоматически наложенной. Установлено, что редкометальная минерализация проявляется только в тех пегматитовых полях, которые приурочены к районам распространения аляскитовой формации. Редкоземельная минерализация устанавливается только в пегматитовых полях, расположенных в непосредственной близости от щелочных гранитов или в районах, где каким-либо образом проявлен щелочной метасоматоз, связанный с этими гранитами. В эту группу объединены пегматиты, известные в литературе под названием пегматитов натро-литиевого типа. Внутри группы выделяют следующие рудно-метальные типы: танталито-поллуцитовый, сподуменовый, сподумен-берилло-танталитовый, колумбито-берилловый, берилло-колумбитовый. В тантало-поллуцитовом типе характерными акцессорными минералами являются розовые турмалины, сиреневые литиевые мусковиты, пурпурит, висмутин, бисмутит, литиевые фосфаты, касситерит; в сподуменовом типе – берилл, танталит, колумбит; в сподумен-берилло-танталитовом и колумбито-берилловом типах - мусковит, касситерит, бавенит, бертрандит, арсенопирит, молибденит, иногда флюорит; в берилло-колумбитовом типе – молибденит, флюорит, топаз, базобисмутит, касситерит. Во всех типах присутствуют второстепенные минералы: мусковит, апатит, турмалин, гранат, биотит.
Рис. 7. Сечение метасоматически замещенного пегматита. По Н. Солодову.
1 – наносы; 2–10 – зоны: 2 – блокового кварца, 3 – крупноблокового микроклина, 4 – мелкопластинчатого альбита; 5 – кварц-сподуменовая; 6 – клевеландит-сподуменовая (по внешней периферии этой зоны располагается маломощная зона сахаровидного альбита, не показанная на чертеже из-за его мелкомасштабности), 7 – кварц-мусковитовых гнезд, 8 – крупноблокового микроклина, 9 – гнезд мелкозернистого альбита, 10 - графическая кварц-микроклиновая (местами сильно альбитизированная); 11 – вмещающие породы.
Внутри группы редкоземельных пегматитов выделены: редкоземельно-цериевый и редкоземельно-иттриевый и микроклино-амазонито-гадолинитовый типы пегматитов. В первом типе основным породообразующим минералом является микроклин, редко затронутый процессами амазонитизации. Редкоземельная минерализация приурочена к зонам окварцевания и представлена ортитом и чевкинитом. В редкоземельно-иттриевых пегматитах – абукумалитом, иттротитанитом, фергусонитом, торитом, цитролитом. Характерным акцессорным минералом является магнетит. В микроклино-амзонито-гадолинитовом типе преобладающими породообразующими минералами являются амазонит, микроклин. Редкоземельная минерализация представлена гадолинитом. Постоянным второстепенным минералом является биотит.
Пегматитовые месторождения бериллия достаточно широко распространены, на их долю приходится вся мировая добыча бериллия. Берилл из пегматитов извлекается преимущественно попутно при разработке их на мусковит, тантал, цезий или литий. Появление в них крупных кристаллов (иногда несколько тонн) позволяет вести ручную выемку и получению без какого-либо обогащения концентратов, содержащих 10% окиси бериллия. Совместно с бериллом часто встречается черный турмалин, колумбит, цитролит, монацит.
Пегматитовые месторождения олова известны в Восточной Сибири России и расположены в докембрийских комплексах. Руды обычно комплексные, разрабатываются на олово, тантал, ниобий, скандий, рубидий, частично на вольфрам и висмут. Наиболее богаты оловом (до 0,1%) альбитовые и альбит-сподуменовые пегматиты. Главные минералы представлены касситеритом, сподуменом, петалитом, амблигонитом, кварцем, микроклином, альбитом, топазом, турмалином; акцессорные минералы – танталит, вольфрамит.
Карбонатитовые месторождения
Карбонатитами называются эндогенные скопления кальцита, доломита и других карбонатов, пространственно и генетически ассоциированные с интрузивами ультраосновного щелочного состава центрального типа, формирующимися в обстановке платформенной активизации. В настоящее время на земном шаре известно более 250 массивов ультраосновных щелочных пород. В России такие массивы известны в Карело-Кольском регионе, Сибири. Размещаются массивы на платформах и имеют различный геологический возраст. Среди них известны массивы докембрийского (Сибирь, Северная Америка), каледонского (юг Сибири), герцинского (Мурманская обл.), киммерийского (Сибирь, Бразилия) и альпийского циклов развития (большинство карбонатитов Африки). Карбонатиты образуют обособленную группу эндогенных месторождений в силу резко специфических геологических условий их образования. Карбонатитовые месторождения связаны только с платформенным этапом геологического развития и ассоциированы с комплексами ультраосновных щелочных пород. Массивы имеют трубообразную форму, дифференцированный состав и концентрически зональное строение. В них выделяют четыре главные группы пород: 1) ранние ультраосновные (дуниты, перидотиты, пироксениты); 2) щелочные (мельтейгит-ийолиты, щелочные и нефелиновые сиениты); 3) ореолы вмещающих пород, подвергшихся щелочному метасоматозу и превратившихся в фениты; 4) карбонатиты (рис.1). Массивы сопровождаются дайковой серией сложного состава, отражающего длительную и направленную эволюцию магматического очага и состоящую из разнообразных пород – от пикритовых порфиритов до щелочных пегматитов. Последовательно формирующиеся группы пород, образующие карбонатитовые массивы, размещаются в центростремительном направлении от периферии к центру и иногда в обратном, центробежном направлении. Примером последнего размещения может служить Ковдорский массив в Мурманской области. Центральная часть массива сложена оливинитами, образующими шток, далее располагаются прерывистым полукольцом пироксениты, а периферическая часть выполнена ийолитами и мальтейгитами. Карбонатиты в массиве представлены несколькими разновидностями: кальцитовыми карбонатитами, имеющими широкое распространение, доломитовыми карбонатитами, которые встречаются значительно реже, и доломито-кальцитовыми, возникшими большей частью в процессе доломитизации кальцитовых разновидностей пород. Многочисленные жилы и линзы, кальцитовых карбонатитов залегают в оливинитах центральной части массива и в щелочных породах его краевой зоны. Они группируются в отчетливо выраженную дугообразную зону и в ее пределах приурочены к серии кольцевых трещин-разломов, пологопадающих внутрь массива (Рис.2).
Рис. 1. Общая схема строения карбонатного месторождения:
1 – щелочные породы; 2 – ультраосновные породы; 3 – гнейсы; 4 – фениты; 5 – шток карбонатитов; 6 – жилы карбонатитов.
Карбонатитовые тела представляют собой штоки, конические жилы, падающие к центру массива, кольцевые жилы, падающие от центра массива, радиальные дайки. Штоки в поперечнике имеют размеры от сотен метров до нескольких километров, а жилы мощностью от 10м при длине несколько сот метров до нескольких километров (1-2 км). Минеральный состав карбонатитов определяется наличием карбонатов, составляющих 80-99%. Наиболее распространены кальцитовые карбонатиты, реже встречаются доломитовые, еще реже анкеритовые и совсем редко сидеритовые карбонатиты. В формировании карбонатитов установлена последовательность их образования – первым накапливается кальцит, далее доломит и анкерит. Остальные минералы в карбонатитах являются акцессорными, их более 150 разновидностей. Типоморфными минералами являются флогопит, апатит, флюорит, форстерит; редкими – бадделеит, пирохлор, гатчеттолит - урансодержащий пирохлор, перовскит-кнопит-дизаналит, карбонаты редких земель (синеизит, бастнезит, паризит).
Рис. 2. Схематическая геологическая карта Ковдорского массива, по В.И. Терновому, Б.В. Афанасьеву, Б.И. Сулимову
1 – сунгулитовые породы; 2 – карбонатиты; 3 – апатит-форстеритовые породы; 4 – магнетитовые руды; 5 и 6 – флогопит-диопсид-форстеритовые гигантозернистые (5) и средне- и крупнозернистые (6) породы; 7 – оливиниты флогопитизированные и диопсидизированные; 8 – гранатовые автоскарны; 9 – монтичеллитолиты; 10 – мелилитолиты; 11 – турьяиты; 12 – пироксениты; 13 – слюдиты и слюдяно-пироксеновые породы; 14 – нефелиновые пироксениты; 15 – полевошпатовые ийолиты и нефелиновые сиениты; 16 – ийолит-уртиты; 17 – ийолит-мельтейгиты; 18 – оливиниты; 19 – фениты; 20 – гранитогнейсы.
В карбонатитах установлен стадийный характер минералообразования: в первую стадию формируются крупнозернистые кальциты с минералами титана и циркония; во вторую – среднезернистые кальциты с дополнительными минералами титана, урана, тория; в третью – мелкозернистый кальцит-доломитовый агрегат с ниобиевой минерализацией; в четвертую – мелкозернистые массы доломит-анкеритового состава с редкоземельными карбонатами. Текстура карбонатитов массивная, полосчатая, узловатая, плойчатая, структура – разнозернистая. По составу полезных ископаемых, концентрирующихся в карбонатитах последние разделены на семь групп. 1. Гатчеттолит-пирохлоровые карбонатиты с содержанием Nb2 O5 0,1-1%; 2. Бастнезит-паризит-монцонитовые карбонатиты с содержанием TR2 O3 от десятых долей процента до 1%; 3. Перовскит-титаномагнетитовые руды связаны с гипербазитами в ассоциации с карбонатитами; 4. Апатит-магнетитовые с форстеритом карбонатиты с содержанием железа 20-70%, Р2 О5 10-15%; 5. Флогопитовые скарноподобные образования, в коре выветривания формируется вермикулит; 6. Флюоритовые карбонатиты; 7. Сульфидоносные карбонатиты с медным оруденением при содержании меди 0,68% и свинцово-цинковым. Минеральные типы рудоносных карбонатитов отвечают различным уровням их возникновения и последующего эрозионного среза (Рис.3).
Геологические структуры, определяющие положение и морфологию карбонатитовых тел внутри массивов, имеют один источник деформирующих усилий и разделяются на две разновидности по их морфологии. Центральные штоки приурочены к цилиндрическим трубкам взрыва. Карбонатитовые жилы приурочены к круговым структурам, среди них выделяют радиальные, кольцевые (падающие от центра), конические (падающие к центру).
Рис. 3. Схематический вертикальный разрез рудоносного карбонатитового штока: 1 – карбонатиты; 2 – ультраосновные-щелочные породы; 3 – осадочно- метаморфические породы.
Формирование массивов ультраосновных щелочных пород с карбонатитами охватывает длительный интервал времени и делится на четыре этапа магматической эволюции, разобщенные перерывами внедрения магматических пород: 1 - образуются ультраосновные породы (дуниты, перидотиты, пироксениты); 2 - щелочно-гипербазитовый этап с формированием биотитовых пироксенитов и перидотитов и мелилитсодержащих пород; 3 - ийолит-мельтейгитовый этап характеризуется появлением пород от якупирангитов (крайне меланократовая бесполевошпатовая ультраосновная щелочная порода) до уртитов (существенно нефелиновая порода); 4 - внедряются нефелиновые и щелочные сиениты. После этого возникают карбонатиты. Все этапы сопровождаются формированием комагматичных даек. Весь интервал времени, охватывающий становление массивов может охватывать несколько десятков и даже первых сотен миллионов лет. Длительное развитие ультраосновных щелочных пород и сопровождающих их карбонатитов происходило в широких рамках температур и давлений. Ультрабазиты формируются при температурах 1350-1100о С, нефелиновые сиениты – 750-620о С, карбонатиты первой стадии 630-520о С, второй стадии 520-400о С, карбонатиты третьей стадии 400-300о С, карбонатиты четвертой стадии 300-200о С. Значительная вертикальная протяженность карбонатитообразования свидетельствует об изменении давления от верхнего уровня (близ поверхности земли) до глубинных горизонтов 100-60 МПа.
Магматическая гипотеза. Форма тел карбонатитов говорит о возможном их образовании при раскристаллизации из магматического расплава. Об этом свидетельствуют обломки вмещающих пород в карбонатитах, флюидная текстура некоторых карбонатитов, наличие в составе карбонатитов остывших расплавленных включений с температурой гомогенизации 880-558о С. Последнее обстоятельство позволило поставить вопрос о явлении магматической ликвации с отделением карбонатного расплава при температуре 900±50о С. Эти представления подтверждаются экспериментальными данными.
Гидротермальная гипотеза. Никто из исследователей не отрицает наличие карбонатитов гидротермально-метасоматического происхождения. В пользу этой гипотезы свидетельствуют следующие данные: наличие постепенных переходов от карбонатитов к замещаемым им породам; наличие реликтов незамещенных силикатных пород, пронизанные сетью прожилков; метасоматическая зональность в распределении минеральных ассоциаций, на контакте карбонатных и силикатных пород; зависимость состава темноцветных и акцессорных минералов карбонатитов от состава замещаемых силикатных пород; избирательный характер карбонатного метасоматоза.
Скарновые месторождения
Скарн - (от швед. scarn, буквально - грязь, отбросы), метасоматические горные породы, сложенные известково-магнезиально-железистыми силикатами и алюмосиликатами; возникают в зоне высокотемпературного контактового ореола магматических горных пород в результате химического взаимодействия карбонатных пород с магмой, интрузивными или другими алюмосиликатными породами при посредстве горячих магматогенных растворов. Различают известковые Скарны, сложенные Ca-Mg-Fe-силикатами и алюмосиликатами (пироксены ряда диопсид-геденбергит и гранаты ряда гроссуляр-андрадит), и магнезиальные Скарн, с магнийсодержащими минералами (форстерит, диопсид, шпинель, флогопит).
Известковые С. возникают преимущественно в условиях малых и средних глубин (до 10-12 км ) в послемагматический этап в контактах известняков с алюмосиликатными породами. Магнезиальные Скарны образуются при реакционном взаимодействии доломитов с внедряющейся магмой или в условиях больших глубин (свыше 10-12 км ) в контакте с алюмосиликатными породами в послемагматический этап. Скарны представлены преимущественно контактовыми линзообразными и пластообразными залежами, реже встречаются трубообразные или жильные тела в карбонатных или алюмосиликатных породах; характерно зональное строение скарновых тел. К Скарн нередко приурочены крупные скопления руд (особенно железа, меди, свинца, цинка, вольфрама, молибдена и др.) и неметаллических полезных ископаемых (флюгопита, боратов и др.).
В связи с этим выделяется особый тип месторождений - скарновый, имеющий важное промышленное значение (например, в СССР из рудных - Магнитогорское железорудное на Урале, Соколово-Сарбайское железорудное в Казахстане, Алтын-Топканское полиметаллическое в Средней Азии, Тырныаузское вольфрам-молибденовое на Кавказе; из нерудных - боратов в Сибири, флогопита в Прибайкалье, на Алдане и на Памире).
СКАРНОВЫЕ МЕСТОРОЖДЕНИЯ — м-ния, в которых руды преимущественно или исключительно локализованы в скарнах и околоскарновых г. п. Может быть выделено 2 типа С. м.: 1) С. м. с сопутствующим оруденением, или собственно С. м., — м-ния, в которых процессы рудообразования, создавшие основные промышленно ценные парагенезисы, в пространстве и во времени сочетались с процессами скарнообразования и формирования околоскарновых п. Этот тип объединяет разнообразные по метасоматическим фациям С. м. флогопита, магнетита, боратовых и сульфидных руд, возникшие в различной по химизму среде, но под воздействием исходно однотипных растворов общего происхождения и в ту же, что и скарны, раннюю (щелочную) стадию гидротерм. процесса вследствие изменения свойств растворов — повышения их кислотности; 2) С. м. с наложенным оруденением, или апоскарновые, — м-ния, в которых процессы рудообразования во времени оторваны от процесса скарнообразования, но пространственно совмещены с его продуктами. Этот тип объединяет разнообразные С. м., связанные с наложением на скарны более поздних гидротерм. растворов кислотной стадии по-слемагм. деятельности вследствие взаимодействия кислых растворов с основной средой скарнов, и представлен мо-либденит-шеелитовыми, шеелит-сульфидным (иногда с оловом), редкометально-сульфидным, галенит-сфалеритовым, полисульфидным, халькопиритовым, шеелит-сульфидным (иногда с Аu), данбургит-датолитовым и др. оруденениями. С. м., сформированные под воздействием растворов, связанных с гранитными магмами, — преимущественно редкометальные и полиметаллические, а с основными магмами и их дифференциатами — железорудные. Устанавливается эмпирическая закономерность взаимосвязи типа рудоносности С. м. и характера скарнового парагенезиса: а) шеели-товое и молибденит-шеелитовое оруденение локализуется преимущественно в скарнах, представленных парагенезисом геденбергитового пироксена с гроссуляровым гранатом; при этом в геденбергите может быть примесь иогансенитовой составляющей (до 20% ), а в гроссуляре — пиральспитовой (до 8 — 22% ); б) железорудное и полиметаллическое оруденение, как правило, связано с асс. железистого граната с салитом; при этом в железорудных и меднорудных С. м. пироксен обычно представлен салитом с примесью геденбергитовой составляющей в пределах 6 — 20%, а в полиметаллических — отличается вариациями в железистости и значительным содержанием иогансенитовой составляющей, однако наиболее типичны мангансалиты и мангангеденбергиты; гранат железорудных, меднорудных и полиметаллических С. м. обычно содержит от 30 до 85% андрадитовой составляющей; в) безрудные скарновые парагенезисы характеризуются развитием чистых иогансенитов, мангандиопсидов, магнезиоиогансенитов и диопсидов, высокоглиноземистых гранатов и гранатов, андрадитовая составляющая которых не превышает 20 — 60%.
Гидротермальные месторождения
Гидротермальные месторождения (от гидро...
и греч. therme — теплота, жар), большая группа месторождений полезных ископаемых, образующихся из осадков циркулирующих в недрах Земли горячих водных растворов, Выделяются 4 группы источников воды гидротермальных растворов: 1) магматическая вода, отделяющаяся из магматических расплавов в процессе их застывания и формирования изверженных пород; 2) метаморфическая вода, высвобождающаяся в глубоких зонах земной коры из водосодержащих минералов при их перекристаллизации; 3) захороненная вода в порах морских осадочных пород, приходящая в движение вследствие смещений в земной коре или под воздействием внутриземного тепла; 4) метеорная вода, проникающая по водопроницаемым пластам в глубины Земли. Минеральное вещество, находящееся в растворе, при отложении которого формируются Гидротермальные месторождения,
может быть выделено остывающей магмой или мобилизовано из пород, сквозь которые фильтруются подземные воды. Гидротермальные месторожденияформировались в широком интервале от поверхности Земли до глубины свыше 10 км
; оптимальные условия для их образования
29-04-2015, 00:32