Геологическое строение дна Мирового океана по сейсмическим данным

развития морской сейсморазведки

Сейсмические методы вот уже более полувека являются главным и основным источником информации о глубинном строении земной коры морей и океанов.

Круг задач, которые стояли перед геофизиками в течение этого периода, постоянно менялся. Первые работы были направлены на изучение континентальных платформенных и осадочных структур в их океаническом продолжении. В дальнейшем, после установления существенной разницы в строении земной коры океанов и материков, сейсмические работы были направлены на установление различных типов океанической коры и выяснение связей между ее глубинной структурой и формой рельефа дна.

Первые сейсмические исследования были начаты в середине 30-х годов под руководством Мориса Юинга (США) и ограничивались вначале мелководными участками атлантического шельфа и материкового склона к востоку от побережья Северной Америки. В 1938 году аналогичные эксперименты под руководством Е. Булларда (Англия) были поставлены по другую сторону океана в проливе Ла-Манш. Работы были организованы Отделением геодезии и геофизики Кембриджского университета. В обоих случаях использовалась обычная наземная техника сейсмической разведки с той лишь разницей, что сейсмографы предварительно герметизировались, а затем укладывались на дно. Полученные результаты позволили проследить строение и рельеф коренных пород, прикрытых чехлом более молодых осадочных отложений. Одновременно эти работы показали принципиальную возможность проведения сейсмических исследований в глубоководных участках дна океана, что в значительной степени заинтересовало многих геологов.

Начавшаяся в 1939 году вторая мировая война прервала дальнейшее развитие морских сейсмических работ.

Начиная с 1946 года сейсмические исследования морского дна были возобновлены. За рубежом измерения мощности осадочной толщи и строения земной коры вплоть до 1960 года производились главным образом двумя группами исследователей - университета в Вудс-Холле и Скриппсовского института (США), с одной стороны, и учеными факультета геодезии и картографии Кембриджского университета (Англия) - с другой. Настоящий прогресс в этих работах начался после того, как нефтяными компаниями США были обнаружены колоссальные месторождения нефти и газа под шельфом Мексиканского залива в штате Техас. После этого правительства многих стран, главным образом Атлантического побережья, выделили большие ассигнования, направленные на развитие сейсмических исследований вблизи национальных берегов. Однако следует отметить, что еще к 1950 году геологическое строение дна океана практически не было известно.

Основной объем сейсмических исследований в Мировом океане был проведен советскими, американскими и английскими учеными. При этом наиболее подробному изучению подверглись подводные окраины материков и прилегающие к ним участки глубоководных котловин, отдельные участки рифтовых хребтов, глубоководные желоба и все наиболее значительные структуры океанического дна. Работы проводились в основном методом преломленных волн (МПВ). Огромное количество измерений методом отраженных волн (МОВ) было выполнено американскими нефтяными компаниями в Мексиканском заливе и в окрестностях острова Тринидад.

В период проведения международного геофизического года (МГГ) Ламонтская геофизическая обсерватория Колумбийского университета и океанографический институт в Вудс-Холле (США) развернули широкую программу морских сейсмических исследований в южной части Атлантического океана, в Карибском море и возле южного побережья Африки. В Индийском и Тихом океанах сейсмические работы велись в основном американскими и советскими кораблями. В 1963 году под руководством К. Эмери в США была начата пятилетняя программа комплексного геолого-геофизического исследования структуры Атлантической подводной окраины материка Северной Америки.

После принятия в 1963 году в Беркли предложенной В.В. Белоусовым программы, предусматривающей комплексное изучение глубинного строения Земли в океанах и на суше и получившей название “Проект верхней мантии”, многие страны выразили свое согласие принять участие в ее реализации. В рамках выполнения этой программы большую роль в изучении строения дна Северо-Западной Атлантики сыграли исследования Бедфордского океанографического института и института океанографии Дальхаузского университета Канады. Первые же их работы, проведенные совместно с американскими геофизиками, увенчались большими успехами, и в частности открытием погребенного под осадками Срединно-Лабрадорского хребта. Большой объем сейсмических наблюдений МПВ был выполнен во время кругосветного плавания английского океанографического судна “Челленджер” в 1950-1953 гг. За время этого рейса было отстреляно много профилей МПВ, позволяющих по единой методике изучить строение земной коры в пределах различных морфологических структур дна Мирового океана.

Большая часть сейсмических исследований, проведенных Францией, Испанией, Голландией, Норвегией и Швецией, осуществлялась в непосредственной близости от своих национальных берегов, что было обусловлено решением различных экономических задач, и в частности поиском и разведкой нефтегазоносных структур в шельфовой зоне Атлантического бассейна. Значительную роль для развития этих работ сыграло открытие в конце пятидесятых годов газовых, а затем и нефтяных месторождений в Северном море. Сейсмические измерения здесь были начаты в 1959 году. Интересно отметить, что уже в 1964 году в Северном море работало 46 сейсмических отрядов, снаряженных нефтяными компаниями Швеции, Голландии, ФРГ и других стран. Детальные исследования, направленные на поиски перспективных структур, проводились преимущественно методом отраженных волн.

В Советском Союзе первые морские сейсмические работы были проведены в 1941 году на Каспийском море, в районе Апшеронского полуострова. Организаторами этих работ были Н.И. Шапировский и С.Ф. Шушаков. Регистрация упругих колебаний производилась обычными сухопутными сейсмографами, предварительно герметизированными. Сейсмографы со шлюпки укладывались на дно, сейсмическая станция располагалась на катере. Применявшаяся аппаратура позволяла проводить работы на глубинах не более 20-30 м. С целью совершенствования методики и аппаратуры морской сейсморазведки в 1949 г. была организована научно-исследовательская морская геофизическая экспедиция (НИМГЭ), которая совместно с Московским институтом геофизики (ВНИИ Геофизика) в 1952 г. создали и опробовали новый пьезокристаллический сейсмоприемник, позволяющий вести прием колебаний в воде. Позднее были созданы пьезосейсмические косы, с помощью которых можно было выполнять наблюдения методом отраженных волн на ходу судна.

С 1958 г. морская сейсморазведка в СССР становится важнейшим методом исследования геологии дна акваторий. Еще раньше в 1954 г. институт Океанологии провел первые советские сейсмические работы в Тихом океане.

В период МГГ большой объем работ ГСЗ был выполнен институтом ВНИИ Геофизика в дальневосточных морях, в Индийском и Тихом океанах. В Арктическом бассейне эти работы проводились в основном институтом Геологии Арктики (НИИГА).

Первые советские сейсмические работы в Атлантическом океане были начаты в 1963 году и проводились в районе островов Мадейра на парусном океанографическом судне “Седов”. Впоследствии аналогичные исследования, но в значительно большем объеме, были проведены в Северо-Западной Атлантике в 1964-1965 гг. на судне “Полюс”. Проведенные измерения позволили выяснить особенности строения и мощности осадочных отложений в указанных районах океана. Начиная с 1967 г. эти исследования продолжаются Институтом океанологии АН СССР, гидрографией флота и др. В 1969-1971 гг. были осуществлены комплексные (магнитные, гравиметрические и сейсмические) исследования структуры земной коры и осадочной толщи в Северной и Экваториальной Атлантике. За шестьдесят лет, прошедших со времени первых работ Мориса Юинга, методика и техника морских сейсмических измерений претерпела весьма существенные изменения. Весь период становления и развития этих исследований можно приблизительно разделить на четыре этапа.

Первый из них (1936-1946 гг.) можно охарактеризовать как экспериментальный. Основной задачей исследований на этом этапе являлось доказательство принципиальной возможности и целесообразности расширения сейсмических работ на область океана. Методика первых измерений была чрезвычайно сложна, аппаратура громоздка и неудобна. Это объясняется в первую очередь тем, что на первом этапе применялась в основном обычная сухопутная аппаратура, приспособленная к проведению морских работ. Необходимость укладки предварительно герметизированных сейсмографов на дно (впрочем, как и зарядов) затрудняла продвижение измерений на большие глубины и существенно снижала производительность.

Второй - послевоенный этап, охватывающий период с 1946 по 1950 г., характеризуется большим оживлением прерванных войной сейсмических исследований в Атлантическом, Тихом и Индийском океанах. Эти годы явились началом интенсивного освоения методики глубоководных измерений. Последнее стало возможным благодаря созданию пьезоэлектрического приемника давления, применению подвешенных гидрофонов и поверхностных взрывов, позволивших значительно упростить методику исследований МОВ и МПВ в океане. Немалую роль в сыграло использование военных кораблей США и Англии, освободившихся от военных действий после окончания второй мировой войны.

Третий этап охватывает период с 1950 по 1960 год. Он отмечен коренным изменением методики глубинного сейсмозондирования благодаря применению сейсмоакустических радиобуев. Первая конструкция радиобуя была разработана в Кембриджском университете (Англия) под руководством М. Хилла в 1949 году. Одновременное использование нескольких буев позволяло вести работы МПВ с одного корабля, тогда как раньше эти работы требовали постоянного присутствия на профиле двух кораблей. Новая методика сразу же получила признание, ибо значительно удешевляла исследования и давала возможность увеличить число экспедиций. Впервые радиобуи были широко использованы при проведении сейсмических измерений в кругосветной экспедиции на “Челленджере” в 1950-1953 годах. Впоследствии они нашли широкое применение при исследованиях структуры земной коры подводной окраины материка и глубоководных бассейнов Мирового океана.

Современный - четвертый - этап сейсмических исследований Мирового океана начался с 1960 года после создания Скриппсовским океанографическим институтом и Электронной лабораторией ВМФ США аппаратуры непрерывного сейсмического профилирования (НСП), позволяющей получать непрерывный разрез верхних слоев земной коры (главным образом осадочной толщи) по пути следования корабля. В качестве источника возбуждения был применен электроискровой разрядник (спаркер), который вместе с приемным гидрофоном буксировался за кораблем. Вслед за спаркером были созданы и другие типы излучателей, позволившие заменить дорогостоящие и опасные взрывчатые вещества и одновременно резко увеличить производительность морских сейсмических работ. За короткий период с помощью аппаратуры профилирования была проведена съемка огромных океанских площадей и изучена структура осадочного покрова и рельеф подстилающего фундамента во всех провинциях дна. Одновременно резкое удешевление работ позволило целому ряду стран включиться в производство сейсмических исследований в океане.

Например, если на первых трех этапах эти измерения проводились преимущественно двумя странами - США и Англией, то начиная с 1960 года в работы последовательно включается целый ряд стран Западной Европы, а также Канада, ЮАР, Япония и др. Конечно, немалую роль при этом сыграло открытие крупных месторождений нефти и газа на шельфах Северной Америки и Европы, а также развитие взглядов на природу и тектонику дна океана.

На сегодняшний день морские геолого-геофизические работы также продолжаются как с целью поиска полезных ископаемых, так и с чисто научными целями. Например, в нашей стране этим занимаются такие организации как СевМорГео и ВСЕГЕИ. Последняя в основном акцентирует внимание на науку.

Глава 4. Сейсморазведка

Сейсмическая разведка (сейсморазведка) является одним из важнейших видов геофизической разведки земных недр. Основой методики сейсморазведочных работ являются возбуждение сейсмических волн и измерение времени пробега этих волн от источника до расстановки сейсмоприемников, обычно располагаемых вдоль прямой линии, направленной на источник.

Вызванные взрывом или другим способом упругие волны, распространяясь во всех направлениях от источника колебаний, проникают в толщу земной коры на большие глубины. В процессе распространения в земной коре упругие волны претерпевают процессы отражения и преломления. Это приводит к тому, что часть сейсмической энергии возвращается к поверхности Земли, где вызывает дополнительные сравнительно слабые колебания. Эти колебания регистрируются специальной, достаточно сложной аппаратурой. Зная времена пробега до отдельных сейсмоприемников и скорость распространения волн, можно воссоздать траектории сейсмических волн. Структурную информацию получают в результате изучения траекторий волн, попадающих в две основные категории: головные, или преломленные, у которых главная часть пути проходит вдоль границы раздела двух слоев и, следовательно, приблизительно горизонтальна, и отраженные волны, у которых энергия первоначально распространяется вниз, а в некоторой точке отражается обратно к поверхности, так что общий путь практически вертикален. Для траекторий волн обоих типов времена пробега зависят от физических свойств горных пород и элементов залегания пластов. Задача сейсморазведки состоит в том, чтобы получить информацию о породах, в частности об элементах залегания пластов, из наблюдаемых времен вступления волн и (в меньшей степени) из вариаций амплитуды, частоты и формы сигнала.

Рис.8 Прохождение отраженных и преломленных волн через слои земной коры от источника до приемника: 1 - вертикальное отражение; 2-широкоугольные отражения 3- преломленные волны.[3]

Полученные записи подвергаются глубокой обработке с применением самой современной вычислительной техники. Анализируя и интерпретируя полученные после обработки результаты, квалифицированный специалист-геофизик может определить глубину залегания, форму и свойства тех слоев, на поверхности которых произошло отражение или преломление упругих волн.

Мощности осадочного чехла океана и его слоистую структуру изучают главным образом методом отраженных сейсмических волн, тогда как информация о строении океанской коры и верхней мантии под осадками черпается из данных, получаемых методом преломленных волн. Эти наиболее широко применяемые сейчас геофизические методы были разработаны в 50-е и в начале 60-х гг. М. Юингом и его коллегами из Ламонтской обсерватории, М. Н. Хиллом из Кембриджского университета, Р. Райттом и Дж. Шором из Скриппсовского института. Позже они прошли проверку и стали широко применяться нефтяными компаниями при разведке как морских, так и наземных месторождений углеводородов.[2]

Траектории волн, отраженных от поверхностей раздела, легко изобразить графически (рис.8 ). При помощи отраженных волн можно установить границу раздела между любыми двумя слоями, акустический импеданс (функция скорости и плотности) которых различен. Отношение энергии отраженной волны к исходной (называемое коэффициентом отражения Рэлея) для нормальной плоской волны выражается формулой

где Р- плотность, а С-компрессионные скорости в соответствующих слоях. Разность импеданса для границы раздела можно определить путем измерения количества энергии, отраженной этой поверхностью. В большинстве случаев более интенсивная запись на ленте самописца соответствует увеличению амплитуды отраженной волны. Тонкие слои с небольшой разницей импеданса обычно не регистрируются. На сейсмограммах отраженных волн регистрируется удвоенное время прохождения волной пути от источника до границы раздела. Чтобы по времени прохождения волн вычислить глубину залегания или мощность слоя, нужно знать скорости распространения волн на всем их пути. Поэтому отсутствие данных о скоростях волн в вышележащих слоях затрудняет изучение глубинного слоя, но форму его поверхности все равно можно установить. Путь прохождения преломленных волн более сложен (рис. 8). Они пересекают границы между разными средами таким образом, что время прохождения от источника до приемника будет кратчайшим . Обычно при работе методом преломленных волн используются волны, распространяющиеся вдоль кровли слоя, в котором скорости значительно больше, чем в вышележащих слоях. Для определения скоростей сейсмических волн и глубин залегания таких слоев измеряется время, затраченное волнами на прохождение пути от источника до приемника.[3]

4.1 Метод отраженных волн (МОВ)

Метод отраженных волн (MOB) - наиболее эффективный и развитый метод сейсморазведки, применяемый в наибольших объемах при поисках и детальной разведке месторождений нефти, газа и ряда других полезных ископаемых на суше и на море. Предложен в США Р. Фессенденом в 1917 году и Ж. Карцером в 1919 году и, независимо от них, - в СССР в 1923 году В. С. Воюцким и в Великобритании Дж. Ивенсом и У. Уитни - в 1922-м. В настоящее время MOB используется:

- для определения глубины и формы залегания границ раздела геологических напластований;

- выявления структурных и неструктурных ловушек полезных ископаемых, особенно нефти и природного газа;

- при благоприятных обстоятельствах для получения данных о литологии, фациальном составе пород, условии их образования, характере флюидов, насыщающих поровое пространство горных пород, и др.

Морские сейсмические исследования MOB проводятся в основном по двум методикам — ОГТ и непрерывное профилирование, которые существенно различаются по стоимости, мощности источников, эффективной глубине проникновения энергии и еще по ряду других параметров. Упругие волны в MOB возбуждают с помощью проведения взрывов в неглубоких скважинах или действием специальных невзрывных источников. На поверхности регистрируются отраженные волны от достаточно протяженных геологических границ, на которых заметно меняется волновое сопротивление (акустическая жесткость) соседних толщ. Таким границам обычно соответствуют литологические и тектонические поверхности разделов геологических сред. После регистрации упругих волн изучают их кинематические (времена прихода, скорости распространения и т. п.) и динамические (амплитуды, частоты и др.) характеристики. Отраженные волны всегда регистрируются на фоне помех глубинного и поверхностного происхождения. Поэтому для их выделения применяют специальные приемы возбуждения, записи и обработки, использующие различия в кинематических и динамических характеристиках отраженных волн и волн-помех. Полевые наблюдения выполняют по специальным системам наблюдений. В настоящее время основными являются системы многократных перекрытий, обеспечивающие получение значительной

избыточной информации, что предопределяет необходимость в дальнейшем проводить обработку по самым высокоэффективным технологиям. В настоящее время в сейсморазведке MOB применяют преимущественно 48-кратные перекрытия с расстоянием между каналами от 25 до 100 м. Запись колебаний производится, главным образом, сейсморазведочными станциями с числом каналов 96 и более. Обработка данных MOB практически полностью автоматизирована и, как правило, выполняется в крупных вычислительных центрах на мощных ЭВМ. В процессе обработки используют такие преобразования полевых записей, которые существенно улучшают отношение сигнал/помеха. Для воссоздания реального пространственного положения отражающих границ выполняют специальные преобразования волнового поля, позволяющие перейти от координат точек прихода волн на поверхности наблюдений к координатам глубинных точек отражения. Окончательные результаты обработки представляют в виде сейсмических изображений среды временных и/или глубинных динамических разрезов. Пример такого разреза показан на рис. 9. [2] [4]


Рис.9 Временной разрез по одному из профилей в Северном море, отображающий строение окраинных склонов коралловых рифов[2]

Важной принципиальной особенностью MOB является тот факт, что


29-04-2015, 00:45


Страницы: 1 2 3 4 5
Разделы сайта