Артезианские воды

распространённым типом каптажных сооружений являются буровые скважины – одиночные или групповые. Механизированная проходка скважин обеспечивает вскрытие водоносных горизонтов и зон в весьма сложных горно-геологических условиях на глубинах до 2 км и более. При этом удаётся надёжно разобщать водоносные горизонты в скважинах (обсадка трубами, цементация затрубного пространства), предотвращать обвалы стенок и прорыв воды по затрубному пространству, а также устанавливать насосное оборудование, обеспечивающее отбор с заданными эксплуатационными дебитами. Для обсадки таких скважин обычно применяются стальные трубы. При эксплуатации агрессивных подземных вод (углекислых, сероводородных, с низким pH и др.) каптажные скважины обсаживаются трубами из антикоррозийных материалов: легированных сталей, винипласта, полиэтилена, асбоцемента и прочими.

Надкаптажные сооружения на месторождениях минеральных подземных вод выполняются в виде бюветов, павильонов, галерей.

Длительная эксплуатация водоносных пластов, сложенных тонко- и мелкозернистыми песками, с напором как выше, так и ниже поверхности земли, на некоторых участках приводит к вымы­ванию и выносу на поверхность песчаного материала. В результате водоносные пласты приобретают более рыхлое сложение с образо­ванием в них пустот. Этот процесс на некоторых участках (чаще при глинистом водоупорном перекрытии и неглубоком залегании от поверхности водоносных пластов) приводит к деформациям поверхности земли, прилегающей к эксплуатируемой скважине, со всеми вытекающими отсюда неблагоприятными последствиями для близ расположенных на поверхности инженерных сооружений.

3. Строительство в условиях наличия подземных вод

3.1 Ситуация в районе Московского артезианского бассейна

Современный строительный бум, охвативший большинство крупнейших городов России неразрывно связан с гидрогеологическими изысканиями. Гидрогеология – наука о подземных водах земной коры, уделяет немало внимания артезианским водам. Немалые сложности, связаны с наличием подземных, в том числе и артезианских вод.

Неблагоприятная гидрогеологическая ситуация зачастую является препятствием к строительству. Техногенная деятельность на территории городов (глубокая откачка подземных вод, сильные нагрузки возводимых сооружений, создание обширных подземных полостей и др.) ведет к нарушению естественных несущих свойств грунтов, способствуя карстовым и суффозионным провалам.

Для примера рассмотрим гидрогеологическую ситуацию в Москве.

Московский артезианский бассейн – бассейн подземных вод юго-западной части Московской синеклизы, расположен в центре Восточно-Европейской равнины. Он один из крупнейших в России. Площадь — около 360 тыс. км2 . Водоносные комплексы приурочены к толще карбонатно-терригенных пород от нижнекембрийского до антропогенного возраста, залегающих на складчатом кристаллическом фундаменте.

В соответствии с историческими условиями формирования, для Московского артезианского бассейна характерно наличие трех вертикальных зон, отличающихся особенностями гидродинамических и гидрохимических условий.

Пресные подземные воды бассейна являются одним из источников водоснабжения Москвы и всего Центрального промышленного района России. Наибольшими ресурсами обладают каменноугольные водоносные комплексы, которые широко используются для питьевых и промышленных целей.

Соленые воды и рассолы зон затрудненного и замедленного водообмена, приуроченные преимущественно к девонским и пермским отложениям, используются для лечебных и бальнеологических целей. Слабоминерализованные воды (4 г/дм3 ) верхнедевонских горизонтов в районе Москвы известны как минеральная вода «Московского» типа.

Гидрогеологическая обстановка в г. Москве сложилась под воздействием длительного и недопустимо интенсивного водоотбора из артезианских водоносных горизонтов карбона, а с другой стороны, характеризуется развитием процессов подтопления грунтовыми водами и подпором от гидротехнических сооружений. Увеличивающаяся разница в напорах артезианских и грунтовых вод способствует перетеканию загрязненных грунтовых и поверхностных вод вниз, к питьевым горизонтам карбона. В наибольшей степени эти процессы проявляются там, где отсутствует глинистая разделяющая толща верхней юры, лежащая между грунтовыми и артезианскими водами.

Водаоказывает многообразное воздействие на грунт: она может вызывать растворение минеральных частиц грунта и влиять на напряженное состояние массивов. Понижение уровня воды уменьшает ее взвешивающее давление на минеральные частицы грунта, приводит к увеличению капиллярного давления, в результате чего возрастает нагрузка на скелет, происходит его уплотнение, сопровождающееся оседанием поверхности земли и осадками зданий и сооружений.

Образование пустот под центральной частью Москвы – следствие нарушения системы подземных, и в частности артезианских вод.

В Москве существует целый ряд территорий, гидрогеология которых способствует риску провалов и разрушений зданий.

Еще в советское время в Москве произошел ряд случаев, когда целые дома уходили под землю по причине того, что гидрогеологические риски не были просчитаны или учтены. В 60-е годы во время строительства Сокольнической линии метро, были обнаружены карстовые пустоты в районе Охотного ряда.

Кроме того, в 1930-е гг. в результате строительства канала Волга-Москва произошел подъем Москва-реки примерно на 3,5 м, что привело к подтоплениям в ряде районов столицы и области, причем именно в этом состоянии сооружалась первая очередь метро, что создавало дополнительные трудности.

В результате трудностей в строительстве возникавших в районе артезианских вод сегодня, в Москве есть места, где вероятность провалов особенно велика (например, участок от Остоженки до Арбата).

В центральной части города геологическая обстановка резко отличается от той, которая сложилась, например, на Теплостанской возвышенности или в других районах. Пока динамическое равновесие гидрогеологической системы сохранялось, строительство здесь велось спокойно в течение столетий, и никаких осложнений не было.

Главное нарушение спокойствия – подземное строительство.

3.2 Подземное строительство

В Москве и других крупных городах России появляется все больше сооружений, частично или полностью расположенных ниже поверхности земли. Под землей строятся транспортные тоннели и переходы через улицы, автомобильные стоянки и различные хранилища, огромные многоцелевые комплексы.

Город заглубляется в землю, расширяя используемые площади. Это одно из главных направлений в стратегии современного строительства. При строительстве подземных сооружений роются глубокие котлованы, из которых вынимается большой объем грунта. Это приводит к резкому нарушению равновесия в грунтовом массиве. Грунт начинает смещаться в сторону котлована – к освободившемуся пространству. Он увлекает за собой фундаменты существующих зданий, что может привести к их разрушению.

Глубокие котлованы собирают подземную воду и вызывают понижение ее уровня. В то же время крупные подземные сооружения могут пересекать водоносный горизонт. В этом случае они играют роль плотины в отношении грунтового потока и поднимают его уровень. Изменение уровня грунтовых и артезианских вод в сторону понижения или повышения может существенно повлиять на устойчивость фундаментов подземных сооружений. Особенно чувствительны к ним ослабленные временем старинные постройки.

Предотвращение негативного влияния подземного строительства на окружающую территорию является одной из главных задач геологических изысканий.

Наличие подземных вод при проходке тоннелей всегда осложняет производство проходческих работ. В зависимости от гидрогеологических условий приток воды в выработку может изменяться в больших пределах: от нескольких кубических метров в час до 2000-2500 м3 /ч. Большие водопритоки требуют специальных мер по отводу воды и высокопроизводительного оборудования для ее откачки на поверхность.

В ряде случаев подземные воды изменяют свойства горных пород. Некоторые глины при увлажнении набухают и тяжело разрабатываются. Глинистые сланцы при попадании воды теряют устойчивость. Насыщенные водой пески легко отдают воду при проходке выработки, это требует их предварительного осушения. Тонкозернистые пески с примесью илистых частиц способны удерживать воду и превращаться в плывуны. Проходка в таких условиях очень сложна и требует применения специальных способов.

Подземные воды являются важным фактором, который надо учитывать при проектировании метрополитена – выборе трассы, применении тех или иных конструкций, способах гидроизоляции, составлении проекта организации строительства. При проведении инженерно-геологических изысканий определяют наличие подземных вод, их характер, химический состав, ожидаемые водопритоки при проходке. Наличие подземных вод в слое породы определяется бурением разведочных скважин.

В Москве построены и строятся надземные, наземные и подземные (мелкого и глубокого заложения) линии метро. Наиболее распространен подземный метрополитен.

Глубина заложения линии выбирается с учетом геологических, геоморфологических, гидрогеологических условий. Предусматриваются сохранение исторических и архитектурных памятников, защита зданий от шума и вибраций, вызываемых движением поездов. При изучении массива горных пород особое внимание уделяется таким показателем, как величина горного давления, коэффициент разрыхления, модуль трещиноватости, коэффициент упругого отпора, абразивность, коррозионные свойства, сопротивление отрыву и сдвигу по контактам между слоями и по трещинам, расслаивание, пучение, плывунность и т.д. Особого внимания требуют такие опасные явления, как карст, суффозия, оползни.

Подземные воды, содержащие вредные примеси, которые оказывают разрушающее действие на обделку тоннеля, называют агрессивными.

Использование подземного пространства в любом случае связано с нарушение системы подземных вод – в основном с их откачкой. Во время строительства станций метро «Арбатская» (Арбатско-Покровской линии) и «Боровицкая» рабочие столкнулись с огромными трудами: проходчики сооружали их буквально по пояс в воде. «Арбатская» стала единственной станцией, оборудованной насосами, откачивающими воду.

Откачка, производимая и в других местах, с тяжелой гидрогеологической ситуацией, зачастую и приводит к опасности обрушений строений, стоящих на поверхности: по закону Архимеда в отсутствие воды вес почвы существенно, в разы, возрастает, увеличивается давление на глубинные слои грунта, и он начинает уплотняться и проседать.

В исторической части Москвы это особенно очевидно. Также следует учитывать и то, что вода, поступающая в грунт с дождями, постепенно размывает почвы даже на большой глубине, создавая процесс так называемой суффозии. Суффозионный процесс делает грунт более рыхлым, так как его частницы вымываются водой в карстовые пустоты, которые есть и под центром города, например в районе м. «Охотный ряд».

При этом, например, проект «Золотое кольцо», в рамках которого в Москве планируется построить несколько высотных зданий, не вызывает особого беспокойства у специалистов, с учетом того, что в процессе их строительства будут применены современные технологии и проведена всеобъемлющая тщательная экспертиза места застройки. Сталинские высотки строились в то время, когда опыт сооружения таких зданий у отечественных строителей был неизмеримо меньше, и все же они до сих пор стоят, достаточно крепко.

3.3 Современные технологии гидрогеологических исследований

Подземная вода, содержащаяся в порах грунта, трещинах и полостях горных пород, способна перемещаться под действием сил тяжести, в значительной степени влияет на прочностные и деформационные характеристики грунта. Известно, что глинистые и биогенные грунты по мере увеличения влажности теряют свою прочность, а при отрицательных температурах подвержены морозному пучению. Прочность же песчаных грунтов с уменьшением влажности заметно снижается. Увеличение коэффициента фильтрации подземных вод приводит к возникновению суффозионных и карстовых процессов, а их высачивание на склонах косогоров (или на откосах насыпей) – к появлению оползневых процессов.

Существование самих подземных вод зависит от режимообразующих факторов, связанных с изменением действия ранее существовавших и возникновением новых источников питания.

Расположенные вверх по подземному потокуводоемы, промышленные предприятия с большим потреблением воды, инфильтрация утечек из крупных коллекторов систем канализации приводят к повышению уровня подземных вод, а функционирование водозаборов и дренажных систем – к понижению.

Строительство зданий и сооружений с заглубленными фундаментами и освоение подземного пространства может вызвать образование барьерного эффекта и подтопление вышележащих территорий.

Эксплуатация сооружений нередко приводит к загрязнению подземных вод, а также к ухудшению механических свойств грунтов, вмещающих эти воды, с негативными последствиями (например, оползень в г. Витебске весной 2004 г.).

Существенной особенностью изменений режима подземных вод является их скоротечность. Время протекания инженерно-геологических процессов, связанных с подземными водами, оказывается сопоставимым со временем эксплуатации здания или сооружения. Разумеется, что наиболее интенсивные воздействия геологическая среда испытывает в городских условиях. И поэтому здания и сооружения, запроектированные с соблюдением всех требований, через некоторое время могут оказаться в иных условиях (неизвестными становятся места и глубина залегания подземных вод), что снижает их эксплуатационную надежность.

Важным фактором обеспечения эффективного строительства является мониторинг геологической среды. Прямые его методы – зондирование и бурение скважин с отбором проб грунта.

К наиболее распространенным косвенным методам относятся электрометрические, радиоволновые и сейсмические. В городских условиях при наличии плотной застройки и развитой сети подземных коммуникаций бурение скважин зачастую бывает проблематичным, а использование электрометрических и сейсмических методов невозможным. Кроме того, информация, полученная путем бурения скважин, является точечной. Она характеризует свойства только тех грунтов, которые взяты из данной скважины. А широко используемая интерполяция для оценки свойств грунтов, залегающих между двумя соседними скважинами, часто бывает некорректна. Интерполяционная ошибка в оценке геологической и гидрологической обстановки будет тем больше, чем больше расстояние между скважинами. Метод периодического контроля подповерхностной среды должен быть, во-первых, неразрушающим, а во-вторых, непрерывным в пространственных координатах. Этим двум требованиям удовлетворяет радиоволновой метод электроразведки – радиолокационное подповерхностное зондирование. Сущность его заключается в периодическом излучении в подповерхностную среду зондирующих электромагнитных сигналов, приеме сигналов, отраженных от неоднородностей подповерхностной среды, обработке этих сигналов и построении радиолокационного изображения (РЛИ). Этот метод в последние годы часто применяется для обнаружения, картирования и определения типа подземных вод.

Важную роль играет математическое моделирование техно-природной среды, с помощью которого анализируется взаимодействие сооружений и вмещающего их грунтового массива. С применением моделирования построен крупное подземное сооружение – Торгово-рекреационный комплекс (ТРК) на Манежной площади. Его глубокая часть защищена от воздействия грунтов и проникновения подземных вод ограждающей железобетонной конструкцией, возведенной способом «стена в грунте». Со стороны гостиницы «Москва» она устроена из буросекущих свай.

Сегодняшние технологии вполне могут обеспечить безопасное строительство небоскребов, но только в том случае, если в плане безопасности не будут делаться уступки инвестору, из соображений выгоды.

Для обеспечения безопасного строительства в районе артезианских вод необходимо проводить тщательные гидрогеологические исследования в соответствии со сводом строительных норм и правил (СНиП).

Настоящие строительные нормы и правила РФ разработаны на основе законодательных и нормативных актов РФ и содержат общие положения и требования к организации и порядку проведения инженерных изысканий, выполняемых при хозяйственном освоении и использовании территорий, для проектирования, строительства, эксплуатации и ликвидации предприятий, зданий и сооружений.

Технические требования и рекомендуемые правила в развитие и обеспечение основных положений СНиП регламентируются и детализируются сводами правил, в которых устанавливается состав и объем работ, технология и методика их выполнения для отдельных видов инженерных изысканий, в том числе для различных видов строительства, выполняемых в районах подземных артезианских вод.

СНиП устанавливают общие положения и требования к организации и порядку проведения инженерных изысканий (инженерно-геодезических, инженерно-геологических, инженерно-гидрометеорологических и инженерно-экологических, изысканий грунтовых строительных материалов и источников водоснабжения на базе подземных вод) для обоснования предпроектной документации, проектирования и строительства новых, расширения, реконструкции и технического перевооружения действующих предприятий, зданий и сооружений для всех видов строительства и инженерной защиты территорий, а также к инженерным изысканиям, выполняемым в период строительства, эксплуатации и ликвидации объектов.

Изыскания источников водоснабжения на базе подземных артезианских вод должны выполняться в составе инженерных изысканий для строительства с целью получения необходимых и достаточных данных для проектирования и строительства водозаборов подземных вод.

Изыскания источников водоснабжения необходимо производить, как правило, на участках с достаточными (по региональной оценке) ресурсами подземных вод в простых и средней сложности гидрогеологических условиях без утверждения в установленном порядке эксплуатационных запасов подземных вод для данного водозабора.

При значительной потребности и в сложных гидрогеологических условиях должны выполняться, как правило, геологоразведочные работы с подсчетом и утверждением эксплуатационных запасов подземных вод в соответствии с требованиями нормативных документов Министерства природных ресурсов РФ.

При тесной взаимосвязи подземных и поверхностных вод, когда последние являются основным источником формирования эксплуатационных запасов, изыскания источников водоснабжения должны проводиться в комплексе с инженерно-гидрометеорологическими изысканиями и, как правило, с выполнением стационарных наблюдений.

Изыскания источников водоснабжения необходимо выполнять поэтапно с целью получения материалов и данных с детальностью, обеспечивающей решение следующих задач:

· инженерные изыскания для предпроектной документации – предварительное определение водоносного горизонта или комплекса, на базе которого может быть обеспечено потребное количество воды, и выделение перспективных участков для последующих инженерных изысканий;

· инженерные изыскания для проекта на перспективных участках – выбор из них оптимального для размещения проектируемого водозабора;

· инженерные изыскания для рабочей документации на выбранном участке – получение необходимых материалов для определения типа, схемы размещения, конструкции и режима эксплуатации проектируемого водозабора.

Заключение

В заключении выведем характерные особенности артезианских вод:

· они залегают глубже горизонта грунтовых вод в водоносных горизонтах и комплексах, подстилаемых и перекрытых водоупорными (или относительно водоупорными) пластами;

· область питания и создания напора артезианских вод и область их распространения не совпадают и часто удалены одна от другой нa большие расстояния;

· при вскрытии артезианского водоносного горизонта скважиной вода в ней поднимается выше кровли горизонта, т. е. появление воды в скважине всегда отмечается глубже по сравнению с установившимся уровнем;

· режим артезианских вод является более стабильным по сравнению с режимом грунтовых вод, пьезометрический уровень мало подвержен месячным и сезонным колебаниям; температура вод с глубиной, как правило, возрастает;

· по составу воды самые разнообразные, от пресных до сильно минерализованных (рассолов);

· по сравнению с грунтовыми артезианские воды менее подвержены загрязнению с поверхности в связи с тем, что они перекрываются относительно водоупорными породами.

Артезианские воды имеют чрезвычайно большое народнохозяй­ственное значение. Они широко используются для водоснабжения крупных городов, промышленных предприятий, железнодорожных станций, совхозов, сельскохозяйственных артелей и т. п.

Помимо важного народнохозяйственного значения, артезианские воды могут быть помехой при строительстве, особенно подземном.

Основным средством предотвращения геологического риска или его снижения в условиях мегаполиса является грамотное ведение градостроительной политики с использованием всех современных методов исследования и в соответствии с существующими технологиями безопасности.

Список литературы

1. Абрамов С.К., Дегтярев Б.М., Дзекцер Е.С., Донской Г.В., Муфтахов А.Ж. Прогноз и предотвращение подтопления грунтовыми водами территорий при строительстве. – М.: Стройиздат, 1978.

2. Артезианские воды Чу-Сарысуйской впадины // Под ред. Ибрагимова А.И. – Алма-Ата, 1979.

3. Вартанян Г.С., Яроцкий


29-04-2015, 00:48


Страницы: 1 2 3
Разделы сайта