Пробы из скважин, попавшие на линию разбавления располагаются около границы системы Бродландс, где отмечается разбавление углекислым конденсатом. Остальные данные получены из продуктивных скважин, где отмечается кипение. Некоторое соответствие данных по скважинам 7 и 24 позволяет предполагать периодический подток глубинных, кипевших гидротерм к границе системы, возможно по трещинам. Аналогично, разбавленные гидротермы из скважины 8 в продуктивной зоне, показывают на периодический подток воды в зону хлоридных гидротерм. Причина, по которой график кипения отличается от того, что показано на Рис. 6, вызвана тем, что Tm, полученная по включениям в минералах, отражает минерализацию и содержание газов, тогда как диаграмма энтальпия-хлорид не учитывает газ. Следовательно, кипение вызывает увеличение хлорида в остаточной жидкости, в то же время оно значительно уменьшает содержание газа в жидкости. В системе с большим содержанием газа газоотделение в результате кипения будет преобладать над тенденцией увеличения содержания хлорида, в связи с чем, общее содержание растворимого вещества в гидротермах становится проблематичным. На Рис. 9 данные, совпадающие с расчётной кривой кипение-равновесие, показывают, что оба процесса имеют место.
Тренды ожидаемых для включений в минералах Th и Tmмогут быть использованы при картировании зон разбавления и кипения в палеоэпитермальных системах и могут помочь в определении минерализации и газосодержания. Таким образом, мы можем с достаточной детальностью определить геохимическую структуру любой эпитермальной системы, а также идентифицировать эволюцию гидротерм и её связь с минералообразованием.
4 Источники низкосерных гидротерм и их состав
Как было показано в главе 3, часть воды в низкосерных эпитермальных системах представлена метеорной водой глубокой циркуляции, которая взаимодействовала в разной степени с вмещающими породами. Однако, генетическая связь эпитермальных систем с магматическим источником тепла открывает возможность предполагать, что в эпитермальных гидротермах имеется магматическая компонента; это наверняка справедливо и для высокосерных систем. Доказательства участия магматического флюида в эпитермальных гидротермах обычно получают путём исследования содержаний в карбонатах. Bethke и Ry, Сasadevale, Ohmoto, Robinsonи Robinson, Christie, обнаружили 513 С, подтверждая наличие магматической компоненты в месторождениях Крид и Саннисайд в Колорадо и в Туй и Маратонто в Новой Зеландии. Они также считают, как и ONeil и Silbermanдля Комсток Лоде в Неваде, что имеются данные 5 D, доказывающие наличие небольших содержаний магматической воды в некоторых системах. Однако, данные по 534 S из сульфидов часто позволяют предполагать, что сера в эпитермальных месторождениях ремобилизована из морских сульфатных минералов
С другой стороны, активные системы могут дать нам некоторое понимание такой проблемы, настолько точно можно анализировать трековые газы. Оценки 513 С с СО2 активных систем в Н. Зеландии колеблются от 3 до 9%, Hedenquist. Другие исследователи предполагали, что этот предел может объясняться смешиванием ювенильного СО2 с СО2 , полученном при термическом разрушении осадочных карбонатов. Однако, большинство данных глубинного происхождения "магматического" компонента в гидротермах приходится на отношение 3 Не/4 Не. Это отношение превышает атмосферное в 4 -7 раз и характеризует газы, связанные с субдукционными системами. Отношение гелия в сочетании с данными по содержанию аргона свидетельствуют о смешивании радиогенного и магматического гелия. Кроме того, отношение между нейтральными газами N2 , Ar и He в активных системах позволяет предполагать изменчивость пропорции смеси газов как атмосферного, так и магматического составов, наряду с примесью некоторого количества коровых газов из гидротерм с застойным режимом.
Доля 534 S в общем количестве серы вулканической зоны Таупо в Н. Зеландии колеблется от +3 до 6%. Giggenbachпредполагал, что геотермальная сера образовалась в магматических условиях, в результате восстановления из SO2 . Однако, величина 534 S, полученная из Н^, свидетельствует об ассимиляции относительно тяжёлой осадочной серы в результате частичного плавления граувакков базальтовой магмы, имеющей 534 S 0%. Величина 534 S в сульфидах из эпитермальных месторождений о. Кюсю в Японии в среднем составляет 0%%, в связи с чем Ishiharaetal., пришли к выводу о магматическом происхождении гидротермальной серы, а не из фундамента. Данные по изотопии свинца кальдер Лейк Сити и Криде и японских эпитермальных месторождений позволяют предполагать, что свинец происходил как из пород фундамента, так и из вулканических пород. Однако, Honetal. отмечают, что основная часть свинца, привнесённая гидротермами в районе Лейк Сити, должна была происходить из окружающих вулканитов олигоцена или связана с магматическим источником, хотя, в общем, свинец имеет комплексное происхождение; так, например, урановая смолка в Голден Флик, вероятно, образовалась в результате привноса из DoCm верхней коры.
Щелочно-земельные, другие элементы, как Na, K, Ca, Mg, Fe, SiO2 и т.д., и щёлочи, появились в разбавленных гидротермах, в основном, в результате взаимодействия с вмещающими породами. Они контролируются несколькими реакциями минерал-гидротермы. Однако, источник хлора и других малоактивных компонентов ещё не ясен. Giggenbachпредположил, что, по существу, все анионы магматического происхождения, хотя частично они могут быть мобилизованы из первично осадочных пород в результате магматической ассимиляции. Henley, Ellisom, предполагают присутствие на глубоких уровнях хлористого рассола, взаимодействующего с метеорными водами глубинной циркуляции. Это приводит к логическому предположению о связи глубинных высокоминерализованных гидротерм, связанных с меднопорфировой минерализацией, и вышележащих эпитермальных систем. Эти взаимоотношения будут обсуждаться в следующем разделе - о высоко серных системах.
Итак, низкосерные эпитермальные гидротермы состоят преимущественно из метеорных конвективных вод, циркулирующих вблизи магматических интрузий, и ими нагреваются. Во время процесса нагревания гидротермы захватывают часть магматических компонентов в основном СО2, SO2, HCl и второстепенные газы N2,H2, Ar, He и т.д. Активные газы нейтрализуются прежде, чем гидротермы достигнут эпитермальных условий, за исключением случая высокосерной системы. Большая часть минерализации гидротерм образуется за счёт выщелачивания вмещающих пород. Однако, происхождение минерализации, интересной для рудников, золота и серебра, ещё не ясно. Автор склонен считать, что это происходит за счёт вмещающих пород. Скорее всего, количество выщелоченных металлов непосредственно связано с транспортными возможностями гидротерм, а не с первоначальной концентрацией металлов во вмещающих породах. Привнос золота непосредственно магматическими флюидами предполагает концентрации золота в них в сотни ppb, что не подтверждается концентрациями золота в эпитермальных гидротермах, в составе которых магматический флюид составляет малую долю. Нет каких-либо данных о чрезвычайно высоких концентрациях золота и в магматических флюидах, хотя и не исключается, что такие данные появятся при более тщательном изучении высокосерных систем в дальнейшем.
5 Химический состав гидротерм высокосерных эпитермальных систем
Описание высокосерных эпитермальных сред, в том виде как оно кратко изложено в первой главе, приводит нас к выводу о большой роли вулканизма, тесно связанного с вулканогенными флюидами. После краткого рассмотрения результатов изучения гидротермального метаморфизма, включений в гидротермальных минералах и стабильных изотопов этого типа эпитермального рудообразования, далее будет кратко обсуждаться химический состав гидротерм, формирующихся на активных андезитовых вулканах.
Минералогия, связанная с рудообразованием, может быть представлена остаточным ноздреватым кремнезёмом, каолинитом, пирофиллитом, алунитом, иллитом, пиритом, энаргитом, теннантит -тетраэдритом, ковеллином и т. д. Некоторые из этих минералов свидетельствуют о кислом рН, возможно меньшем 2 для ноздреватого кремнезёма.
Stoffregenпровёл великолепное исследование парогенетических связей между золотом и гидротермальными изменениями в Sammitville и сделал первый шаг в изучении геохимии высокосерных систем. Он предположил, основываясь на своих данных о мобильности алюминия, что рН в интервале 1.7- 2.0, возможно, необходимы для образования ноздреватого кремнезёма. Отсутствие гематита и последующее отложение самородной серы также ограничивают химический состав выщелачивающих гидротерм, т. к. здесь присутствует пирит и алунит и отсутствует каолинит. Во время взаимодействия с вмещающими породами рН гидротерм будет расти. Это приводит к обычно необходимой зональности минералов по мере продвижения кислых гидротерм через образование зоны стабильности каолинита и иллита, к пропилитизации вмещающих пород.
Минералогический состав в конечном счете, приводит к окончательным выводам о химическом составе и температуре гидротерм, ответственных за формирование данного типа месторождения. Однако, детальные исследования Stoffregenна месторождении Summitville, показали, что пока нет каких-либо данных, устанавливающих точную пространственную и временную связь золотой минерализации и рудовмещающих минералов в высоко серных месторождениях этого типа. Это означает, что невозможно полно и уверенно определить химический состав рудообразующих гидротерм в различных взаимосвязанных месторождениях, их источники и процессы, обусловившие минералообразование.
В настоящее время реконструкция минерализации этих систем имеет слабую основу, вследствие отсутствия соответствующих аналитических данных и по флюидным включениям в минералах. Имеющиеся данные получены по вторичным включениям в кварцевых кристаллах в Summitville и других месторождениях; по температурам 200-3000 С и минерализации 7-21 вес.% экв. NaCl,. Эти температуры были подтверждены Stoffregenдля Summitville в мелких зёрнах кварца, проросших в сульфидной минерализации в зоне ноздреватого кремнезёма. Во включениях же он определил минерализацию 4-6 вес.% экв. NaCl. Кроме того, Stoffegenидентифицировал включения в минералах в зоне ноздреватого кремнезёма с очень низкой температурой замерзания, что интерпретируется им как следствие наличия в них серной кислоты. Хотя по включениям в сочетании с минералогическим составом установлены температуры гидротерм, аналогичные температурам в низкосерных системах, минерализация колеблется в широких пределах и это свидетельствует о присутствии рассолов. Данные по флюидным включениям в кварце, связанные со стадией наложения в Эль Индио, а также в пост минерализационном кварце г. Кази и месторождениях типа Нансатсу свидетельствуют о температурах в пределах 200-3000 С, но кажущаяся минерализация составляет везде менее 2 вес% экв. NaCl. Исключением из этого являются недавно открытые дочерние кристаллы галита в некоторых флюидных включениях в минералах их шахты Касуга. Допуская, что данные о низкой минерализации относятся к минерализации гидротерм, в пост высокосерной стадии, можно предположить, что со временем происходит уменьшение минерализации.
Происхождение серы месторождения Голдфилд по изотопным исследованиям магматическое, вероятно участвует в виде SO2 ; аналогичный вывод возможен для Чайканши, а также для некоторых жильных алунитовых месторождений шт. Юта. Предполагаемая связь этих месторождений с интрузиями также, связанными с медно-порфировыми месторождениями, была отмечена и обсуждалась рядом авторов. Однако, из групп медно-порфировьгх месторождений, в которых присутствуют высокие содержания золота, может иметь частичное отношение и связь с медно-порфировыми месторождениями, расположенными на более высоких гипсометрических уровнях золото-медных месторождений. В случае медно-порфирового месторождения Бутте " обрушение" метеорной конвективной ячейки на магматическую систему привели к концентрации первичной медной руды в жилах; это обрушение предварялось развитием продвинутой аргиллизации, связанной с кислыми магматическими флюидами. В связи с этим происхождение гидротерм высоко серной системы часто относится, по крайней мере, частично, к магматическому источнику.
5.1 Химический состав вулканических летучих
Логично рассматривать активные вулканы с точки зрения понимания химического состава рудообразующих гидротерм при наличие условий доказательства присутствия кислых рассолов в высокосерных золотых месторождениях на высоких гипсометрических уровнях в вулканических структурах. Количество качесвенных и полных анализов вулканических летучих ограничено. Это связано с опасностью и трудностью отбора проб из 10000 С ревущих фумарольных каналов на вулканах, находящихся в фазе извержения. Тем не менее имеются доверительные данные, полученные в течение последних 30 лет на Шовашиндзоне и на других андезитовьгх и дацитовых вулканах Японии и из горячих источников, связанных с этими вулканами. Кроме того, Giggenbachпосле 1970г. провёл детальные наблюдения состава фумарольных газов на о. Уайт Изменчивость этих летучих даёт многое в понимании процессов, происходящих в недрах гидротермальной системы, связанной с этим вулканом и служит основой для многих предположений и гипотез.
На Шовашиндзан, после извержения дацитового купола в 1944 году, состав фумарол значительно изменился, вследствие уменьшения доли первичных вулканических газов и увеличения доли метеорной воды. В течение 33 лет также уменьшилась температура с 10000 С до 5500 С. Эта эволюция от магматической к преимущественно метеорной системе аналогична той, которая предполагалась для объяснения высоко серной минерализации в Summitville.
В Японии имеется много кислых, преимущественно сульфатно-хлоридных геотермальных систем, связанных с активным вулканизмом. Sakai, Matsubayaпоказали, что источником серы в некоторых из этих систем является сульфат морских осадков или океаническая вода. Захват морской воды, возможно, произошёл магматическим очагом в. Сатума-Иводжима. Однако, в большинстве систем привнос серы и других газов реализовался за счёт магмы, без учёта первичного источника. Обычно имеются доказательства притока в кислые гидротермы большой доли метеорной воды, которые, в конце концов, разгружаются в виде горячих источников или низкотемпературных фумарол.
Содержание 534 S в сульфатах в этих системах обычно выше, чем в сульфидах, что, наряду с данными 518 О, позволяет предполагать их происхождение, непропорциональное SO2
4SiO2 + 2H2O — 3H2SO4 + H2S
Эта реакция, происходящая при высокой температуре, приводит к образованию изотонических тяжёлых сульфатов и соответственно лёгких сульфидов. Cульфат, образованный в результате поверхностного окисления в низкосерной системе, отличается тем, что он будет иметь изотопный состав, аналогичный сульфидам, так как
H2S + 2O2 - H2SO4 0
изотопное фракционирование не происходит при низкотемпературном окислении, вследствие кинетических факторов. Эти два типа сульфатов называются здесь первичногипогенными и вторичногипогенными, соответственно. Их образование может отличаться от образования супергенного сульфата, сформированного в результате поверхностного окисления сульфидов, исходя из их значений 534 S и 518 О.
2FeS2 + 7H2O + 9O2 — 2Fe2O3 ' 3H2O + 4H2SO4
Непропорциональность SO2 приводит к образованию изотопически тяжёлого сульфата, в то время как сульфаты и сульфиды, образованные при низких температурах, будут иметь аналогичные составы, вследствие кинетических эффектов, устраняющих равновесное фракционирование. Состав 18 О в каолините, образованном из холодной грунтовой воды, будет значительно тяжелее, чем высокотемпературные каолиниты, т. к. при более низких температурах фактор фракционирования более эффективен. Таким образом, комбинацию изотопных данных по сере и кислороду, наряду с K-Ar данными можно однозначно использовать для идентификации типа систем __________________________ ___________________________
Таблица 4
Изотопные характеристики сульфатнокислых изменений различного происхождения
Окисление H2S | Нерациональность | Супергенное окисление | |
S алунита | = сульфиды | >> сульфиды | = сульфиды |
18 О каолинита | Смещено от линии каолинита | Смещено от линии каолинита | Вблизи линии каолинита |
К/Ar алунита | согласованный | согласованный | Более молодой |
Как уже обсуждалось ранее, значительная эволюция химического состава газов в фумаролах Шовашиндза на о. Уайт имела место после извержения. Giggenbachотмечал цикличность в изменении химического состава газов с выделением нескольких периодов разогрева и охлаждения. Во время периодов охлаждения химический состав газов изменялся от типичного состава магматических летучих, в которых среднее окислительное состояние серы равно —+ 3, а HCl, HF и H2 играют значительную роль, до газового состава, который ближе к низкосерным геотермальным системам. В них газы SO2 , HCl, HF абсорбированы или нейтрализованы в системе каналов; H2 S, CH4 составляют значительную долю в виде окисленных газов магматических флюидов, содержание которых уменьшается в результате их взаимодействия с вмещающими породами гидротермальной системы. В периоды разогревания HCl, HF, а также самородная сера, становятся летучими и, как только дренирующая система очищалась от этих продуктов, конечный член магматического флюида, содержащий значительный процент CO2 , SO2 , H2 , CO, достигал поверхности.
При высокотемпературной стадии фумарол система дренирования сама поддерживает режим разгрузки, характерный для высокосерной гидротермальной системы. Однако, поскольку саморегулирующая оболочка минерализованных вод, окружающая дрену начинает взаимодействовать с магматическими газами, то может возникнуть ситуация, аналогичная той, которую предполагал Stoffregenдля месторождения Summitville, и которая создаётся во время стадии затухания или латерального подтока вод к главной системе разгрузки.
Рассол, дренируемый непосредственно в кратере вулкана о. Уайт, хлоридно-сульфатный. Состав этого рассола очень похож на отношение ферридовых элементов, характерного для вмещающих андезитов, что свидетельствует о простом конгруэнтном растворении пород во время нейтрализации чрезвычайно агрессивных магматических гидротерм. Однако, интересно то, что медь в рассоле содержится в значительно меньшем количестве, чем ожидалось. Это свидетельствует о её консервации в недрах системы дренирования. Разгрузка этого рассола на поверхность не постоянна, вследствие влияния динамики грунтовых вод вулкана.
Во время активизации высокотемпературной разгрузки о. Уайт, общая сера 534 S относительно постоянна и проявляется в основном в виде SO2. В низкотемпературной стадии разгрузки, субповерхностное отложение изотонически лёгкой элементарной серы увеличивает разгрузку 534 S. Уменьшение разгрузки 534 S происходит, когда сера повторно мобилизуется. 534 S сульфатов и H2S из японских термальных источников, связанных с вулканами, полностью отражают первичное отношение SO2 /H2 O магматических газов. Лёгкие H2S и тяжёлые сульфаты дают дополнительные доказательства, что они образуются в результате диспропорциональности SO2.
Важная роль магматического SO2 в основной доле высоко серной системы очевидна. Если будет представлена восстановительная магма, то главным соединением серы в фумаролах будет H2 S. Следовательно, этот флюид будет достигать поверхность прежде, чем H2S окислится до сульфата и будет образован кислый флюид. Однако, присутствие относительно окисленной магмы, SO2 будет главным соединением серы и непропорциональным субмагматическим температурам. Эти типы интрузий наиболее часто наблюдаются в ассоциации с золотоносной медно-порфировой минерализацией.
6 Геохимическая структура эпитермальных систем
По Гигенбаху, подъём вулканических газов и их переход из окислительного в восстановительное состояние представляет собой "битву буферов, в которой каждый достигает частичной победы". Система никогда не приходит в равновесие, но зависимость от степени и продолжительности взаимодействия флюид-порода и протяжённости пути миграции, весь гидротермальный процесс от вулканических к геотермальным условиям может существовать в одной системе; схематически это показано на рис.12. Высокосерные системы приводят к образованию кислых гидротерм, к их окислению и перегреву. В отличие от этого гидротермы в низкосерных системах подвергаются большому воздействию породами, что
29-04-2015, 00:52