Основные вопросы, касающиеся геологии

— отверстие, дыра ) — трубообразный вулканический канал, имеющий в плане круглое или овальное очертание и обра­зующийся в результате однократного прорыва газов. При этом имеет место не излияние лавы, а ее внедрение в магмаподводящий канал, сложенный вулканической брекчией. Диаметр поперечного сечения диатрем до 1 км. Наряду с вулканическим материалом диатрема заполнена обломками горных пород из стенок канала (базальты, лимбургиты, вулканические туфы, кимберлиты и оса­дочные породы).

Вулканический конус — вулканическая построй­ка, имеющая форму конуса; образуется путем отложения вулканического материала вокруг жерла . Форма конуса обусловлена степенью текучести лавы, а также характером рыхлого материала (пепла, шлаков, лавобрекчии и др.). Обычно на вершине вулканического конуса находится кра­тер, вследствие чего вершины конусов срезаны. Крутизна склонов вулканического конуса определяется размерами обломков. При выбросе тонкого материала образуются склоны с углом от 30 до 35°; более грубый материал, естественно, скапливается вблизи кратера, создавая склоны с уклоном до 40° и более. Скорость роста шлаковых вулканических конусов весьма значительна. Так, вулканический конус Парикутин в Мексике, возникший на ровном месте, в течение недели вырос до 140 м, а к концу второго месяца высота его измерялась 300 м. На склонах главных конусов располагаются мелкие побочные (паразитические) конусы и тре­щины, из которых вытекают потоки лавы. Застывшая в трещинах лава образует дайки, значительно укрепляющие вулканическую постройку. Склоны крупных вулканических конусов бывают из­борождены барранкосами (исп. «барранко» — глубокий овраг, ущелье ) — оврагами, радиально расходящимися от вершины к подножию вулкана, образовавшимися в результате размыва склонов дождевыми и талыми водами, а также выпахивающего действия сухих лавин, скатывающихся из кратера.

Стратовулкан (смешанный вулкан) представляет собой вулканический конус, построенный из рыхлого мате­риала (бомб, лапиллей, пепла и др.), выбросы которого обычно предваряют вулканические извержения взрывного характера и лавовых потоков. Далее происходит периодическое чередование эксплозивной деятельности с почти чисто лавовой. Стратовулкан является наиболее распространенной формой центрального типа.

Щитовидный вулкан — вулканическое сооружение, образовавшееся в результате многократных излияний жидкой лавы. Имеет форму очень пологого щита, падение склонов кото­рого в верхней части 7—8°, в нижней 3—6°. На вершине щитовид­ного вулкана располагаются кратеры, имеющие вид широких блюдцеобразных впадин с крутыми, часто вертикальными или террассобразно-ступенчатыми стенками. На дне кратеров действующих щитовидных вулканов находится жидкая (разливающаяся) лава в виде озер. В недействующих щитовидных вулканах лава застывшая.

К вулканическим телам с отрицательной морфологией отно­сятся: вулканический кратер, маар, лавовый колодец, кальдера.

Вулканический кратер — впадина в виде чаши или воронки, образованная главным образом в результате экспло­зивных извержений. Кратер тесно связан с вулканическим кана­лом и представляет собой поверхностное его проявление. Поперечник вулканического кратера обычно 2—2,5 км, редко несколько больше, глубина — от нескольких десятков до нескольких сот метров. Многократ­ные извержения создают вулканическую постройку — вулкани­ческий конус, на вершине которой находится вулканический кра­тер. Возникающие на вершинах вулканических конусов стенки кратеров, часто крутые и скалистые, сложены лавой, пирокластическими породами, либо тем и другим. Плоское дно кратера, если оно, не завалено обломками вулканических пород, имеет воронкооб­разную форму. В действующих вулканах на дне кратера находятся одно или несколько бокка, откуда выбиваются фумаролы (итал. «фумарола» — дым ) — выходы вулканического газа и пара в виде струй или спокойно парящих масс из трещин или каналов на поверхности вулкана или из неостывших лавовых и пирокластических потоков и покровов.

Существуют и кратеры космического происхождения. Метеоритные кратеры, или астроблемы (от греческого astron — звезда и blema — рана) - это округлое углубление на земной поверхности, возникшее в результате удара метеорита или (значительно реже) астероида, кометы. Вокруг кратера – кольцевая зона деформированных пород. Число известных метеоритных кратеров невелико, по современным данным, их около 120.

Бокка (итал. bocca - рот, отверстие ) - отверстие на дне кратера или на внешнем склоне вулкана, откуда происходят излияния лавы, выброс пепла или других продуктов извержения.

Нередко внутри большого (главного), более раннего кратера в результате сокращения объема вулканической деятельности образуются другие кратеры, развивающиеся над сокращенным в диаметре магмаподводящим каналом (жерлом). Различают также латеральные кратеры (побочные, паразитиче­ские), которые располагаются на склоне главного вулкана (вулканического конуса) и представляют собой поверхностное выражение дополнительного магмавыводного канала, отходящего от центрального (главного) магмавыводного канала.

Иногда на поверхности Земли встречаются кратеры метеоритного происхождения. В настоящее время известно около 120 таких кратеров.

Маар — относительно плоскодонный кратер взрыва с жер­лом без конуса, но окруженный невысоким валом из рыхлых продуктов извержения, представляющих собой горные породы, слагающие стенки жерла. Маары иногда заполнены водой. Поперек маара колеблется от 200 до 3200 м, глубина — от 150 до 400 м. Маары образуются в результате одного взрыва. Для них харак­терно незначительное развитие шлаковой постройки, отсутствие вытекающего из него лавового потока, короткий период извержения и большая сила взрыва.

Лавовый колодец - цилиндрический провал, обра­зующийся на дне кратера, на склонах щитовидных вулканов (Гавайские острова) и на некоторых базальтовых вулканических покровах.

Кальдера (порт. «кальдера» — котел ) — циркообразная впадина с крутыми стенками и более или менее ровным дном, образовавшаяся вследствие провала вершины вулкана и в некоторых случаях прилегающей к нему местности. От кратера кальдера отличается происхождением и большими размерами (в поперечнике до 10—15 км и больше). Часто к кальдерам приурочены фумаролы и грифоны).

Грифон - Выход подземной воды из водоносной породы сосредоточенной струей, поднимающейся выше поверхности земли или дна водоема.

При извержении вулкана выделяются различные продукты вулканической деятельности, которые могут быть га­зообразными, жидкими и твердыми.

Газообразные продукты извержения, или фумаролы (рис. 24 ), со­стоят из водяных паров (75—90%), диоксида углерода (CO2 ), оксида углерода (CO), азота (N2 ), диоксида серы (SO2 ), оксида серы (SO), газообразной серы (S2 ), водорода (H2 ), аммиака (NH3 ), хлористого водорода (HCl), фтористого водорода (HF), сероводорода (H2 S), метана (CH4 ), борной кислоты (H3 BO3 ), хлора (Cl), аргона (Ar), преобразованных H2 O и СО2 . Также присутствуют хлориды щелочных металлов и железа.

Состав газов и их концентрация зависят от температуры и от типа земной коры, поэтому они могут меняться в пределах одного вулкана. При извержении вулканов происходит мощное выделе­ние газовых струй, создающих в атмосфере огромные грибо­видные облака. В поверхностных условиях газы за счет своего расширения при снижении давления насыщают лаву пузырьками, вспенивают ее, образуя пористую лаву (вулканический шлак), которая при застывании дает пемзу.

Жидкие продукты извержения лавы характеризуются температурами в пределах 600—1200 °С. Химический состав лав зависит от состава исходной магмы. Лавы также бывают двух типов: базальтовые (основные) и гранитные (кислые, риолитовые).

Основные лавы, обедненные кремнеземом, имеют жидкую консистенцию, они подвижны, свободно текут. Вытекающая из кратера жидкая лава стекает по конусу вулкана и заполняет пониженные участки поверхности с образованием потоков и покровов. При застыва­нии лавы на поверхности образуется корочка, под которой происхо­дит дальнейшее движение жидкости. Покровы обычно представлены базальтами и имеют темную окраску, значительную плот­ность.

Сравнительно меньше распространены кислые вязкие, низкотемпературные лавы (андезиты, дациты, риолиты), образующие короткие и мощные потоки. Кислые лавы обогащены кремнеземом. Они сравнительно легкие, вязкие, малоподвижные, содержат большое количество газов, остывают медленно. При выходе на поверхность такая лава быстро остывает, не растекается, и образует купола и конусы. Образующиеся при этом породы окрашены в светлые тона, имеют меньшую, чем основные лавы, плотность.

Твёрдые продукты извержения включают в себя вулканиче­ские бомбы, лапилли, вулканический песок и пепел. В момент извержения они вылетаютиз кратера вулкана со скоростью 500—600 м/с.

Вулканические бомбы крупные куски затвердевшей лавы размером в поперечнике от нескольких сантиметров до 1 м и более (рис. 26 ). Они образуются при быстром выделении из магмы содержащихся в ней газов. При этом охлажденный поверхност­ный слой магмы разрушается, давая материал для вулканиче­ских бомб. Внешняя форма вулкани­ческих бомб зависит от состава лавы: кислые лавы дают бомбы неправильных очертаний; основные — округлых и скрученных форм. Скопления вулканических бомб называются агломератами.

Лапилли (лат.— камешек) — сравнительно мелкие обломки шлака величиной 1,5—3 см. Как и вулканические бомбы, они имеют разнообразные формы.

Вулканический песок состоит из сравнительно мелких частиц лавы (в пределах 0,5 см). Еще более мелкие обломки, размером от 1 мм и менее, образует вулканический пепел. Оседая на склонах вулкана или на неко­тором расстоянии от него, пепел уплотняется и образуются вулканические туфы(рис. 27 ). Сцементированные лавой твердые про­дукты извержения вулкана различного размера формируют вулканическую брекчию. Совокупность твердых продуктов из­вержения вулканов выделяют в качестве пирокластическихпород.

3Что такое кристалл

В школьных учебниках кристаллами обычно называют твердые тела, образующихся в природных или лабораторных условиях и имеющие вид многогранников, которые напоминают самые непогрешимо строгие геометрические построения. Поверхность таких фигур ограничена более или менее совершенными плоскостями- гранями , пересекающимися по прямым линиям- ребрам. Точки пересечения ребер образую вершины. Сразу же следует оговорится, что приведенное выше определение требует существенных поправок. Вспомним, например, всем известную горную породу границ, состоящую из зерен полевого шпата, слюды и кварца. Все эти зерна являются кристаллами, однако, их извилистые зерна не сохранили прежней прямолинейности и плоскогранности, а следовательно не подходят к вышеуказанному описанию. Одновременный рост всех составляющих гранит кристаллов, мешавших друг другу развиваться, и привел к тому, что отдельные кристаллы не смогли получить свойственную им правильную многогранную форму.Итак, для образования правильно ограненных кристаллов необходимо, чтобы ничто не мешало им свободно развиваться, не теснило бы их и не препятствовало их росту.Кристаллов в природе существует великое множество и так же много существует различных форм кристаллов. В реальности, практически невозможно привести определение, которое подходило бы ко всем кристаллам. Здесь на помощь можно привлечь результаты рентгеновского анализа кристаллов. Рентгеновские лучи дают возможность как бы нащупать атомы внутри кристаллического тела и определяет их пространственное расположение. В результате было установлено, что решительно все кристаллы построены из элементарных частиц, расположенных в строгом порядке внутри кристаллического тела. Упорядоченность расположения таких частиц и отличает кристаллическое состояние от некристаллического, где степень упорядоченности частиц ничтожна.Во всех без исключения кристаллических постройках из атомов можно выделить множество одинаковых атомов, расположенных наподобие узлов пространственной решетки. Чтобы представить такую решетку, мысленно заполним пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет собой кладка из одинаковых кирпичиков. Если внутри кирпичиков выделить соответственные точки, например, их центры или вершины, то мы и получим модель пространственной решетки. Для всех без исключениякристаллических тел характерно решетчатое строение.Вот теперь мы подошли к возможности дать общее определение для кристаллов. Итак,кристаллами называются «все твердые тела, в которых слагающие их частицы (атомы, ионы, молекулы) расположены строго закономерно наподобие узлов пространственных решеток »[4]. Это определения является максимальноприближенным к истине, оно подходит к любым однородным кристаллическим телам: и булям (форма кристалла, у которого нет ни граней, ни ребер, ни выступающих вершин), и зернам, и плоскогранным фигурам)

Задание к контрольной работе №1

ДАНО:

a =25*15 см (сечение борозды, см)

b =1,2м (длина борозды, м)

g = 1.7г/ см3 (объемная масса, г/см3)

k = 0,1 (коэффициент)

Qконеч.= 100-120г (конечная масса пробы)

d нач.= 60мм (максимальный размер частиц пробы)

d конеч.= 0,2 мм – конечный размер (диаметр) частиц

РЕШЕНИЕ:

1.Определим исходную массу пробы, для этого используем формулу:

Qисх.пробы= a*b*g,

где a – сечение борозды, см (25*15 см);

b- длина борозды, м (1,2м = 120см);

g- объемная масса (1.7г/ см3);

Qисх.пробы=25*15*120*1.7= 76500г= 76.5кг

В основу составления схемы обработки пробы для хим.анализа, принимаем

формулу Ричардса-Чечетта:

Q=k*d . ,

г де Q - масса пробы после сокращения, кг; d -диаметр частиц максимальной

фракции, мм; k - коэффициент, зависящий от степени неравномерности

распределения компонентов.

В нашем случае: исходная масса пробы равна Qисх.пробы=76.5кг; по условиюзадания максимальный размер частиц исходной пробы dнач.= 60мм; k =0,1,

2. Проверим представительность пробы при начальном диаметре ее кусков

(возможность составления схемы обработки пробы для хим.анализа безизмельчения). Надежная масса пробы этой крупности частиц должна быть Q60=0,1*60*60 =360кг, что намного больше массы исходной пробы Qисх.пробы = 76.5кг,следовательно, пробу сокращать нельзя(потеряемпредставительность пробы придиаметре кусков пробы d нач.= 60мм ), следует ее измельчить.

3. Определяем диаметр частиц, до которого нужно измельчить пробу. Дляизмельчения пробы применяем щековую дробилку ДШ-100х60 с максимальнымпитательным размером частиц в 60мм, степенью измельчения 6 и разгрузочнымминимальным размером частиц пробы 3-10мм (по условию задания максимальныйразмер частиц исходной пробы dнач.= 60мм). Применяем степень измельчения 5.

Тогда после измельчения пробы размер ее частиц будет в 5 раз меньше, т.е. 12 мм(разгрузочный минимальный размер частиц пробы), этот размер соответствуетстандартному размеру отверстий грохота.

4. Проверим представительность пробы при диаметре ее частиц в 12мм(возможность сокращения пробы d= 12мм). Надежная масса пробы этой крупностичастиц должна быть Q12=0,1*122 = 14.4кг. При сокращении пробы с исходной массой 76.5кг получим 38,25 кг, т.е. меньше допустимой массы, следовательно, пробусейчас сокращать нельзя (потеряем представительность пробы при диаметре кусков пробы d.= 12мм), следует ее измельчить

5. Для измельчения пробы применяем щековую дробилку ДШ-100х60 с

максимальным питательным размером частиц в 12мм, степенью измельчения 6 иразгрузочным минимальным размером частиц пробы3-12мм, которая позволяетполучить минимальную крупностьчастиц 3мм, т.е. степень измельчения 4. Тогда после измельчения пробы размер ее частиц будет в 4 раза меньше, т.е. 3 мм (разгрузочный минимальный размер частиц пробы), этот размер соответствует стандартному размеру отверстий грохота.3 мм

6. Проверим представительность пробы при диаметре ее кусков d.= 3мм (возможность сокращения пробы при d= 3мм). Надежная масса пробы этой крупности частиц (представительность пробы) должна быть Q3=0,1*32 =0.9кг. При сокращении пробы с исходной массой76.5кг получим 38.25 кг, что более, чем в 2 раза больше, следовательно, пробу можно сокращать.

7. Перемешиваем пробу,

Проводим операцию сокращение массы пробы

Q3.пробы=38.25кг;

Q3.пробы=19,125кг;

Q3.пробы=9,56кг,

Q3 пробы =4.8кг

Q3 пробы =2,39кг

Q3 пробы =1,95кг

что больше надежной массы пробы этой крупности частиц (представительность пробы) Q3=0.9кг. Не нужную часть пробы отправляем в отвал.

На этом 1 стадия схемы заканчивается.

На этом 2 стадия схемы заканчивается.

8. Химическая лаборатория обычно требует, чтобы проба для анализа имела размер частиц не более 0,07-0,1мм (а в нашем случае 0,2мм), поэтому пробу необходимо измельчить до размера частиц d.= 0,2мм

Для измельчения пробы применяем дисковой истиратель ИДА-175 с максимальным питательным размером частиц в 3мм, степенью измельчения 10-25 и разгрузочным минимальным размером частиц пробы 0,1мм, которая позволяет получить минимальную крупность частиц 0,05мм, т.е. степень измельчения 2,5. Тогда после измельчения пробы размер ее частиц будет в 2,5 раза меньше, т.е. 0,2 мм (разгрузочный минимальный размер частиц пробы, что соответствует конечному размеру (диаметру) частиц по условию задания d конеч.= 0,2 мм), этот размер соответствует стандартному размеру отверстий грохота.

После операции измельчения необходимо провести поверочное грохочение грохот со стандартным размером отверстий d = 0,2мм и операцию перемешивание (для получения однородного материала пробы).

9 Проведем перемешивание пробы

10 Надежная масса пробы этой крупности частиц (представительность пробы) должна быть

Q3=0,1*0,2*0,2 =0.004кг.

При сокращении пробы с исходной массой1,119 кг получим 0,004 кг, что более, чем в 4 раза больше, следовательно, пробу можно сокращать.

Проведем сокращение пробы

Q3 пробы =0,59кг

Q3 пробы =0,29кг

11Далее разделим полученную надежную массу пробы на две равные части с конечной массой пробы Qпробы=120г и Q дубликат = 120г и с диаметром частиц пробы d пробы = 0,2 мм и d дубликат = 0,2 мм, что соответствует условия задания (конечная масса пробы Qконеч. = 100-120г и конечный размер (диаметр) частиц пробы d конеч. = 0,2).

На этом 3 стадия схемы заканчивается.

Одна из частей называется пробой, другая дубликатом. На этом составление схемы закончено.




29-04-2015, 00:55

Страницы: 1 2
Разделы сайта