Выполнение гидрографического исследования на штокмановском газоконденсатном месторождении

субгоризонтальная с глубинами 320-330 м. В центральной и восточной части площади развиты повышенные участки дна с глубинами 315-320 м, с трех сторон они окружены более низкими участками с глубинами порядка 330 м.

Уклон на склонах мезоформ составляет 2-3о , изредка до 5о . Особенно выделяются в рельефе узкие протяженные ложбины шириной 150-200 м и длиной 2-3 км. В плане ложбины имеют прямолинейную или сложно-изогнутую форму, U-образное симметричное сечение и глубину от первых метров до 10-15 м. Уклоны на бортах ложбин колеблются от 1о до 15о . В простирании ложбин преобладают два направления: юго-запад - северо-восток и северо-запад - юго-восток. Более широко развиты отрицательные формы рельефа в южной части площади съемки, вследствие чего рельеф южной части более расчленен по сравнению с рельефом центральной и северной частей. В целом рельеф дна на месторождении мелкобугристый.

5.1.3 Сравнение результатов съемки рельефа дна .

В рамках объекта «Дополнительные инженерно-геологические изыскания площадки строительства нефтегазопромысловых сооружений и трассы продуктопровода Штокмановское ГКМ - п-ов Териберка» (1991-1992гг.), в составе комплексных исследований была выполнена детальная съёмка рельефа дна вдоль проектируемых трасс трубопровода по основной и резервной ниткам.

Представленные в данном отчете материалы исследований выполненных ОАО «АМИГЭ» в 2007 году в рамках объекта: «Рекогносцировочные геофизические и промерные работы вдоль трассы «Губа Опасова – Штокмановское ГКМ», характеризуют проектируемую трассу трубопровода вдоль резервной нитки.

На рисунке 5.2 приведены данные промерных работ 1991-1992гг. и 2007г. В результате сравнения данных разных лет нами не выявлено существенных различий в измеренных глубинах моря вдоль центральной линии профиля.

Незначительные отличия связаны с тем, что для построения профиля дна по работам 1991-1992гг. глубины моря снимались с батиметрических планшетов вручную с помощью дигитайзера, при этом снималась точка пересечения линии проектируемого трубопровода с изобатой, а для построения профиля 2007 года использовались непосредственно данные центрального луча эхолота, которых существенно больше. Несмотря на это, отличия данных промера разных лет не превышают указанной в требованиях Технического Задания величины допустимой погрешности измерений 0,5%. Такие же выводы напрашиваются и для мелководной части (район входа в губу Опасова).

Исходя из этого, можно сделать следующие выводы:

- за прошедшие более чем 15 лет, существенных изменений рельефа дна вдоль проектируемой трассы не отмечено;

- применяемая система многолучевого эхолотирования для съемки рельефа дна при проектировании линейных сооружений является методически наиболее обоснованной и высокоточной, что позволяет вести мониторинг донной поверхности на всех стадиях проектирования и строительства сооружений.

6 ВИДЫ РАБОТ

6.1 Составработ

Поставленные задачи будут решаться комплексом методов в составе:

· Навигационное обеспечение, в т.ч. позиционирование с использованием ультракороткобазисной гидроакустической системы подводной навигации;

· Многолучевое эхолотирование;

· Сейсмоакустическое профилирование;

· Гидролокация бокового обзора (с опцией батиметрии и без нее);

· Магнитометрическая съемка.

6.2 М етодика геофизических изысканий

6.2.1 Схема изысканий

Схема производства работ представлена на рисунке 6.1.

Данные МЛЭ будут регистрироваться на жестком диске компьютера сбора данных в форматах SPL (Fugro) и XTF. Оператор будет производить контроль качества входящих данных МЛЭ и периферийных устройств: гирокомпасов, датчиков движения и систем позиционирования.

Для учета скорости звука в воде и рефракции при обработке данных многолучевого эхолота, дважды будут производиться измерения скорости звука. Такой интервал основан опытом работ 2006 – 2007 годов, когда наблюдения подтвердили предположение, что профиль скорости звука изменяется с периодом 12 часов.

Сейсмоакустический профилограф и гидролокатор бокового обзора смонтированы в едином теле. На грузонесущем бронированном кабеле оно буксируется на расстоянии до 1200 – 1400 метров от судна. На расстоянии 20 – 30 метров от системы буксируется магнитометр.

Гидролокация бокового обзора

Требуемая высота буксировки, в первую очередь определяется полосой обзора гидролокатора бокового обзора. Задачей гидролокации бокового обзора (ГЛБО) является выявление потенциально опасных объектов на морском дне. Установленные на буксируемом теле антенны с заданным интервалом (определяемым полосой обзора), излучают акустические импульсы. Сразу после излучения начинается прием отраженных сигналов. Прием продолжается до тех пор, пока не будет излучен следующий импульс. Затем циклы повторяются.

Возвращенный эхосигнал от узкой полосы морского дна, перпендикулярной курсу перемещения носителя антенн, записывается в цифровом виде. Такая запись представляет интенсивность обратного рассеивания сигнала – амплитуду эхосигнала в функции времени. На локационном изображении регистрируются зоны с сильными и слабыми интенсивностями эхосигналов. Совокупность трасс эхосигналов формирует акустическое изображение поверхности дна – сонограмму.

Установленный в буксируемом теле гидролокатор C3D сочетает не только получение высокоразрешающего гидролокационного изображения, но и батиметрических данных в широкой полосе обзора.

Очевидно, что вероятность выявления цели зависит от количества отражений от нее. Принято, что цель может быть выявлена не менее чем 3 отражениями от нее. Интервал между посылками по дистанции прямо пропорционален скорости буксировки и полосе обзора.

Для полосы обзора 200 метров временной интервал между посылками будет равен 0.266 секунды. При скорости буксировки 4 узла (2.05 м/сек), интервал по дистанции составит 0.55 метра. С учетом ширины диаграммы направленности, полосы обзора шириной 200м, со 100 % перекрытием будут выявлены цели размерами 1.2 - 1.5 метра.

На рисунке 6.1 представлен график вероятности выявления донных объектов (предел разрешающей способности), в зависимости от полосы обзора и скорости буксировки гидролокатора бокового обзора.

Рисунок 6.1 Вероятность выявления объектов гидролокатором бокового обзора

Для надежного выявления целей на морском дне высота буксировки должна быть в пределах 10-20% от наклонной дальности. В свою очередь, чем меньше наклонная дальность (полоса обзора) гидролокатора, тем выше детальность исследований. При принятой полосе обзора 175 - 200 метров, необходимая высота буксировки над дном составит 20 - 30 метров. При наклонной дальности обзора гидролокатора 175 - 200 метров и расстоянии между профилями 100 метров будет обеспечено 100% перекрытие при работе на площади и полосе прокладки трубопроводов.

Изыскания будут проводиться при непрерывном движении судна со скоростью 3.5 – 4.5 узлов. Задача поддержания необходимой высоты буксировки «рыбы» над дном (20 – 30 метров) будет решаться изменением длины вытравленного кабеля, с помощью пульта дистанционного управления лебедкой. Длина вытравленного кабеля составит около 3.5 – 4 глубин моря (для скорости буксировки 3.5 – 4.5 узлов), и достигнет 1200 - 1400 метров. Очевидно, что при резких перепадах глубин дна, вероятность касания грунта и повреждения буксируемого тела весьма велика. Для уменьшения вероятности аварийных ситуаций рабочее место оператора будет оснащено монитором, отображающим, с помощью специальной программы, положение буксируемого тела в пространстве на фоне цифровой батиметрической модели дна (полученной на рекогносцировочном этапе работ), так как это показано на рисунке 6.2.

Рисунок 6.2 Окно контроля положения буксируемого тела

Эта информация позволит оператору предвидеть резкие изменения рельефа дна и своевременно предпринимать меры для исключения аварийной ситуации.

Прибрежные участки будут отрабатываться с использованием катеров. Полоса обзора 50 – 100 метров, расстояние между профилями 15 - 20 метров.

Для работ будет использоваться малогабаритный гидролокатор «С-MAX». Дополнительно, непосредственно вблизи берега, будут отработаны по 2 профиля вдоль береговой линии.

6.2.2 Магнитометрия

Основной задачей магнитометрии является идентификация и нанесение на карту потенциальных геологических и техногенных опасностей, геотехнических явлений которые могут повлиять на проектирование, прокладку и эксплуатацию трубопровода и морских нефтегазопромысловых сооружений.

В процессе выполнения магнитометрических наблюдений будут применяться высокочувствительные морские магнитометры SeaSPY и Magis.

Магнитометры будут буксироваться за подводным геофизическим комплексом C3D на расстоянии от 10 м до 30 м от него с помощью кевларового кабеля.

6.2.3 Навигационное обеспечение промера дна и геофизических работ

Координирование судна будет осуществляться на основе определений места с дискретностью 1 секунда по радиосигналам стандартной точности на частотных диапазонах L1 и L2 спутниковой навигационной системы «Navstar». Для этого будут использованы специализированные 12-ти канальные 2-х частотные фазовые навигационные приемники «Starfix HP/XP». Одновременно с приёмом спутниковых радиосигналов системы «Navstar» в специализированные навигационные приёмники будет поступать высокоточный сигнал дифференциальной коррекции от ККС «Нарьян-Мар» РДПС «Starfix», через геостационарный спутник «EA-sat». Минимальный угол возвышения геостационарного спутника «EA-sat» по результатам предшествующих работ составил 7˚, что обеспечило устойчивый приём сигнала. Цифровая регистрация поступающей навигационной информации будет выполняться с дискретностью 1 раз в секунду на основном компьютере сбора информации (формат NMEA-0183). Для этой цели будет использован промышленный компьютер «Advantech» с программным обеспечением «Starfix Suite». Ожидаемая точность позиционирования изыскательского судна – не хуже ±0.5 м.

Навигационная привязка буксируемого тела будет осуществляться с использованием ультракороткобазисной системы гидроакустической навигации. Маяк-ответчик будет крепиться к несущему кабелю, в непосредственной близости от буксируемого тела.

Применяемые системы ультракороткобазисной подводной навигации в комплексе с периферийным оборудованием, обеспечат точность привязки буксируемых устройств, при низком уровне естественных шумов, не хуже 1% от наклонной дальности. Для максимальных рабочих глубин 350 м, при наклонной дальности 1000 м это составит 10 м. Данные позиции геофизических устройств будут в реальном времени передаваться и регистрироваться на системы сбора геофизических данных.

Для геодезической привязки буксируемых устройств в прибрежной зоне, (в зоне неэффективного использования УКБС) будут использоваться модели переменных офсетов. В модели офсетов вводятся:

· Значения длины вытравленного кабеля;

· Превышение точки буксировки над буксируемым устройством;

· Значения курса судна;

· Значения путевого угла судна;

· Процентное соотношение (модель) влияния курса и путевого угла на снос устройства;

· Коэффициент провиса кабеля.

По значениям длины вытравленного кабеля и превышению вычисляется горизонтальное проложение длины кабеля. По значениям, курса, путевого угла и модели сноса вычисляется курсовой угол на устройство.

Для устройств, буксируемых по поверхности, применяется практика соотношения влияния курса и путевого угла как 50% / 50%. Это означает, что курсовой угол на устройство находится как биссектриса угла между линией курса и линией пути судна.

Для устройств, буксируемых на глубине, практикуется соотношение курс / путевой угол как 10% / 90%. Также применяется коэффициент провиса кабеля 0.05.

6.2.4 Батиметрическая съемка рельефа дна

Батиметрическая съемка рельефа дна на площади ШГКМ и вдоль морской части трубопровода будет выполняться при помощи многолучевого эхолота ResonSeaBat 8111. Ширина полосы покрытия для различных глубин приведены в таблице 6.1.

Таблица 6.1

Ширина полосы покрытия МЛЭ, в зависимости от глубины.

Глубина, м Полоса покрытия, м
100 700
200 1500
300 2200
350 2600

При глубинах менее 100 м для обеспечения заданного перекрытия плотность галсов может быть увеличена.

Эхолот будет установлен на специальной штанге.

Совместно с многолучевым эхолотом планируется использовать батиметрические данные буксируемого комплексного интерферометра – ГБО – профилографа. Достоинством этого метода батиметрической съемки по сравнению с многолучевым эхолотом является высокая плотность данных в пределах полосы озвучания ГБО, недостатком – более низкая точность позиции. Имеется алгоритм, позволяющий по характерным формам рельефа уточнять позиции глубин интерферометра. Таким образом, будет повышаться детальность общей батиметрической съемки.

В прибрежной зоне батиметрическая съемка будет производиться с мелкосидящего судна до минимальных глубин, обусловленных безопасным подходом к берегу. В прибойной зоне съемка будет выполняться в периоды полной воды для максимально близкого подхода к берегу. Съемка будет выполняться при помощи многолучевого эхолота Reson SeaBat 8125. Междугалсовое расстояние будет выбираться из расчета диапазона глубин и заданного перекрытия полос съемки и будет составлять 10-100 м. В случае разрыва съемок морской и береговой частей может понадобиться съемка с лодки однолучевым эхолотом. Ширина полосы покрытия для диапазонов глубин показана в таблице 6.2.

Таблица 6.2

Ширина полосы покрытия МЛЭ, в зависимости от глубины.

Глубина, м Полоса покрытия, м
5 16
10 35
20 70
50 170

6.2.5 Уровенные наблюдения

Районы работ располагаются от губы Опасова до ШГКМ. Эта акватория характеризуется полусуточными приливами. Максимальная величина прилива ~ 5 метров, наблюдается у побережья. По направлению к полюсу происходит постепенное уменьшение величины прилива и в районе ШГКМ эта величина составляет ~ 0.8 метров.

В соответствие с ПГС-4, части 1, статьи 1.15 измеренные глубины до 200 метров включительно исправляются поправками за колебания уровня, если средние величины изменений уровня в районе съёмки под влиянием приливных и сгонно-нагонных колебаний превышают 1% от глубины. Глубины, превышающие 200 метров, поправками за колебания уровня не исправляются. Предполагаемая дальность действия одиночного уровенного поста, расположенного в бухте Опасова, составляет ~ 80 километров (при заданной погрешности поправок за колебания уровня моря в 5 см.) Дальность действия уровенного поста рассчитана по гармоническим постоянным 4-х (четырёх) основных волн прилива M2 , S2 , K1 и О1 .

Дальность действия этого же поста (при заданной погрешности поправок за колебания уровня моря в 10 см.) составит 160 км. А при заданной погрешности поправок за колебания уровня моря в 15 сантиметров дальность действия будет 240 км. Таким образом, разбив дальность действия уровенного поста на 3-и точностные зоны (в 5, 10 и в 15 сантиметров) получаем получаем погрешность исправления глубин равную 0.15 %, 0.12 % и 0.1 % от минимальной измеренной глубины.

Таким образом, для обеспечения достоверными поправками за колебания уровня моря достаточно 1 (одного) уровенного поста, устанавливаемого в губе Опасова.

Работы будут состоять из следующих этапов:

- Установки временного уровенного поста

- Привязки «0» поста к выбранным реперам

- Регистрации колебания уровня моря

- Гармонического анализа серии наблюдений

- Расчёта поправок за колебания уровня моря

- Расчёта дальности действия уровенного поста

На посту будут установлены 2 (два) мареографа «Valeport 740» и ГМУ-2. Место установки поста будет выбрано таким образом, чтобы регистраторы мареографов были бы защищены от осыхания, волнения и заносимости, а колебания уровня моря были свободны от местных искажений. До и после окончания работ «0» поста будет связан геометрическим нивелированием 4 класса (в прямом и обратном направлениях) с реперами объекта 10.03.0293; линии L21.1.97. Датчики мареографов (регистраторы уровня моря) будут расположены на одном уровне. Регистрация уровня моря будет осуществляться автоматически по гринвичскому времени с дискретностью 1 раз в 10 минут с осреднением данных за 1 минуту. Для компенсации поправки за колебания атмосферного давления мареографы будут снабжёны капиллярными кабелями. Перед началом работ мареографы будут синхронизироваться по гринвичскому времени, а также в них будут введены коэффициенты, учитывающие плотность морской воды в районе установки.

6.2.6 Контроль качества и обработка данных гидролокации бокового обзора

Полученные исходные данные, сразу после окончания каждого профиля будут загружаться на сетевой жесткий диск. После прохождения контроля качества будут сохранены на диске регистрирующей системы, внешнем жестком диске, компьютере обработки данных и записываться (по мере накопления) на DVD диски.

После этого, в заголовках трасс будет произведена коррекция навигационных данных, основанная на результатах их обработки.

Обработка будет производиться в программном пакете SonarWiz.MAP4.

На первом обработки создается проект обработки. Перед импортом данных в текущем проекте выбирается система координат (функция «Add/EditCoordinateSystem»), которая определяется техническим заданием. Программа SonarWiz.MAP4 позволяет строить мозаику практически в любой картографической проекции.

При импорте исходных данных подбирается базовый коэффициент усиления для всего проекта. После этого для каждого профиля устанавливается индивидуальный коэффициент усиления. SonarWiz.Map содержит несколько процедур обработки: АРУ (AGC), коррекция угловой ориентации луча (Beam Angle Correction (BAC)), регулировка усиления заданная пользователем (UGC) и зависимое от времени усиление (TVG). Если применяется несколько усилений, то они применяются в следующем порядке (в порядке убывания): AGC, UGC, BAC, TVG.

Наилучшей результат достигается, если изображение отраженного сигнала отражает мелкомасштабные (локальные) неровности донной поверхности, выходы твердых пород или отдельно находящиеся объекты (глыбы, валуны, антропогенные объекты).

После проведения процедур обработки направленных на улучшение качества изображения, для устранения геометрических искажений, производится коррекция наклонной дальности.

После того как устранены все геометрические искажения и каждому элементу (пикселю) массива присвоены свои координаты, производиться монтаж мозаичного изображения площади. Далее изображение конвертируется в растровый формат Geo-TIFF и объединяется в среде AutoCAD с координатной сеткой, изобатами для последующего картирования. Контроль качества полученных данных оценивается по непрерывности и контрасту изображения достигнутого при слиянии отдельных профилей и общей мозаики по совмещению обособленных объект с батиметрической картой.

Обработанное акустическое изображение позволит интерпретатору классифицировать формы рельефа дна (возвышенность, гряда, воронка), одиночные акустические образы (техногенные или геологические) и оценить характер донных осадков по текстуре изображения. SonarWiz.MAP4 включает инструмент, позволяющий выделять акустические объекты. Выделение объектов производиться в подпрограммном блоке «Digitizenewfeatures», где содержится графический инструмент для измерения геометрических параметров выделенного объекта.

6.2.7 Контроль качества и обработка навигационных данных.

В течение всего рабочего периода будет производиться непрерывный контроль качества работы навигационной системы, сбора данных и судовождения. Контролируемые параметры не должны будут выходить за заданные пределы:

· Возраст дифференциальной поправки – не более 40 с;

· Количество наблюдаемых спутников – не менее 4 с возвышением не менее 10° над горизонтом;

· PDOP – не более 4;

· Отклонение судна от профиля не более 20 м.

При выходе любого из параметров за заданные пределы профиль будет переделан.

Обработка данных имеет цель создание каталогов координат и глубин по линиям фактического движения геофизических устройств:

· Многолучевого эхолота;

· Интегрированного буксируемого тела (Профилограф + ГЛБО);

· Магнитометр

Обработка будет проводиться в ПО StarfixSuite 7.2 по следующим процедурам:

· Импорт данных;

· Контроль качества;

· Интерполяция глубин с цифровой модели рельефа на линию фактического движения устройства;

· Экспорт каталогов в текстовый формат.

6.2.8 Контроль качества и обработка промера дна.

В течение рабочего периода будет производиться непрерывный контроль качества работы многолучевого эхолота, периферийных устройств и сбора данных. Оператор будет контролировать и оптимизировать следующие параметры:

· Диапазон измерения;

· Мощность излучения;

· Длину импульса;

·


29-04-2015, 00:56


Страницы: 1 2 3
Разделы сайта