Отличную от изложенных концепцию формирования Мирового океана выдвинул коллектив исследователей под руководством С.И. Андреева и И.С. Грамберга (1997, 1998, 1999). По их данным в начале архея могли существовать лишь локальные водные бассейны. Объем воды на поверхности Земли составлял 15-30% объема современного океана. Океанов и континентов не было. Тонкая (5-7 км) кора имела габбро-анортозитовый состав. Спрединг в этот период отсутствовал. Лишь в конце архея появляются первые сиалические выплавки, а крупные сиалические линзы - будущие континенты начали формироваться в протерозое. В палеозое - начале мезозоя произошла кардинальная перестройка литосферы, в результате которой всплыли сиалические глыбы - континенты. Создались условия для обособления и накопления в астеносфере скоплений жидкой базит-ультрабазитовой магмы. Выступая с позиций критики ряда положений плейттектоники, авторы утверждают, что заложение океана, ознаменовавшее наступление эпохи Великой базальтовой экспансии, произошло в средней юре, когда и включился спрединговый механизм формирования коры. Отмечается, что более древняя кора океанического типа на континентах отсутствует. Офиолиты континентов не являются аналогами океанским магматическим комплексам. Самые древние участки океанского дна имеют возраст порядка 170 млн лет, что соответствует бату (средняя юра). Этапы формирования земной коры, процессы, отражающиеся на ее поверхности образованием водных бассейнов, участков суши, впоследствии континентов и океанов - обусловлены этапами глубинной дифференциации Земли - последовательными обособлениями ядра, нижней и верхней мантии и т.д.
Возникновение океана - особый планетарный этап развития земной коры в позднемезозойско-кайнозойское время.
Формирование Мирового океана (Мировой талассогенной системы) происходило стадийно. И хотя спрединговый механизм образования океанической коры имел определяющее значение, спрединговые стадии развития сменялись неспрединговыми. Выделено две мегастадии: а) неупорядоченного спрединга (средняя юра - ранний мел, апт) и б) линейно-упорядоченного спрединга (поздний мел, кампан - квартер), разделенные неспрединговой переходной зоной (апт - кампан).
Начальная стадия первой мегастадии - неспрединговая, характеризуется развитием процессов базификации - ареальной проработкой верхних частей палеолитосферы. В отличие от В.В. Белоусова, базификация рассматривается как гомодромный процесс преобразования базит-ультрабазитового субстрата. Вторая стадия собственно неупорядоченного спрединга: наращивание океанической коры происходит от нескольких одновременно действующих разноориентированных центров спрединга, для которых не характерно формирование спрединговых хребтов. В эту стадию были сформированы старые океанические плиты, возраст которых оценивается в 120-170 млн лет.
Стадия неупорядочного спрединга соответствует времени формирования разнонаправленных линейных магнитных аномалий Китли.
Зона перехода к упорядоченному спредингу характеризуется формированием протяженных вулканических поясов, вдоль которых развиваются вулканы центрального и щитового типов.
С кампана начинается вторая мегастадия линейно-упорядоченного спрединга, продолжающаяся до настоящего времени. В течение первой стадии возникают молодые океанические плиты, во вторую (с конца олигоцена) образуются срединно-океанические хребты.
В кайнозойскую эру в связи с формированием и развитием срединно-океанических хребтов образовались линейные Ламонтские магнитные аномалии, наиболее древняя из которых датируется возрастом в 70 миллионов лет.
В процессе формирования молодых океанических плит (26-80 млн лет) наибольшие скорости спрединга достигали 50-100 мм/год (Центрально-Индийский хребет).
Глобальная система срединно-океанических хребтов (сводовая часть 0-10 млн лет, фланги - 10-26 млн лет) разделяется на два главнейших звена: Индо-Атлантическое и Индо-Тихоокеанское. Первое характеризуется низкими скоростями спрединга < 30 мм/год. Индо-Тихоокеанское звено - высокоскоростное (> 30 мм/год), причем в различных его сегментах скорости существенно различаются. В пределах Индо-Красноморского сегмента скорости средние - 20-30 мм/год. На Восточно-Тихоокеанском поднятии меняются от 60 до 160 мм/год, на отдельных участках Южно-Тихоокеанского поднятия скорости спрединга в период 10-80 млн лет составляли всего 20-35 мм/год, а на Австрало-Антарктическом поднятии 25-30 мм/год (в период 26-80 млн лет). Отмечается нарастание скорости спрединга в сторону экватора. Так, в Индо-Тихоокеанском секторе в западном крыле скорость спрединга на севере 35 мм/год, на экваторе 81 мм/год; на восточном крыле подобная картина: на севере - 22 мм/год, на юге - 24мм/год, в районе экватора - 94 мм/год (Андреев и др., 1999). Характерной особенностью строения срединно-океанических хребтов являются трансформные разломы разного масштаба и протяженности, ориентированные вкрест простирания хребтов и разделяющие их на отдельные сегменты, смещенные в плане относительно друг друга на различные, иногда весьма существенные расстояния до нескольких сотен и более километров. Кинетика спрединга, обусловившая морфологию, структуру и сегментацию хребтов, как будет показано в дальнейшем, влияет на состав и масштабы гидротермального сульфидного оруденения, во всяком случае, определенная корреляция между этими явлениями наблюдается.
Существенная роль в структуре океанского дна принадлежит крупным разломам, разграничивающим разновозрастные участки Мирового океана. Между линией Императорский хребет - Гавайи - Лайн - Туамоту на востоке и Восточно-Индийским хребтом (или параллельным ему хребтом Инвестигейтор) на западе расположен древний участок океана с мезозойским базальтовым основанием, юрскими и меловыми осадочными образованиями. За пределами этого сегмента возраст основания не древнее палеоценового. Основная часть осадочного чехла сформирована в эоценовое время и позже.
На это обращал внимание В.В. Белоусов, подчеркивая, что Тихий океан отчетливо разделяется на две части - западную и восточную. На западе кора толще (до 10 км) и более сложного строения, на востоке кора тоньше (до 8 км) и однородней.
Весьма своеобразным элементом структуры океана являются <горячие> точки, характеризующиеся специфическими магматизмом и металлогенией. По мнению большинства исследователей, <горячие> точки являются поверхностным проявлением конвекционных струй в нижней мантии. Горячие мантийные струи занимают фиксированное положение. Поэтому проявления магматизма на поверхности перемещающихся литосферных плит образуют постепенно омолаживающие цепочки вулканических центров. В качестве примеров рассматриваются: Гавайский хребет, Императорские горы, хребет Луисвилл в Тихом океане, Восточно-Индийский подводный хребет в Индийском океане и др. Для Гавайского архипелага установлено постепенное омоложение вулканических построек от о. Мидуэй (на северо-западе) до о. Гавайи (на юго-востоке) в течение последних 30 млн лет. Направления миграции вулканических центров в общем коррелируют с направлением движения литосферных плит над <горячими> точками в результате спрединга.
Магма вулканов, связанных с <горячими> точками, относится к щелочно-базальтовой формации, которая рассматривается как производная недеплетированной мантии.
В Мировом океане насчитывается 56 <горячих> точек. К вулканическим постройкам <горячих> точек и перекрывающих их осадков приурочены разнообразные проявления рудной минерализации. В зависимости от характера магматической дифференциации они имеют различную геохимическую специализацию: Cu-Zn, Cu-Pb, Cr-Ni-Os и т.д. В некоторых случаях допускается возможность связи с ними карбонатитов с редкоземельной специализацией, проявлений алмазоносных кимберлитов и др. (Андреев и др., 1999).
Выяснение истории формирования океана, установление основных этапов и свойственной им геодинамики определяют ведущие механизмы образования коры океанического типа. Эти положения находят отражение в строении основных типов океанических структур, особенностях проявления магматизма, эволюции процессов магмообразования и специфике состава и потенциальной рудоносности магматических комплексов.
2. Общая характеристика основных структур
Мировой океан занимает 2/3 поверхности планеты. В географическом смысле он представляет собой всю совокупность океанов и морей на Земле.
В геологическом понимании океан отличается от континента мощностью и строением земной коры. В океане отсутствует так называемый <гранитный> слой, а осадочный чехол, как правило, характеризуется ничтожной мощностью. Мощный чехол при отсутствии гранитного слоя отмечается лишь в периферических частях океана вблизи устьев крупных рек. Например, в Атлантике вблизи устья Амазонки, в Бенгальском заливе Индийского океана в месте впадения в него Ганга. Мощные осадки нередко отмечаются во внутренних морях.
Мировой океан с геологической точки зрения - это собственно океаны Тихий, Индийский, Атлантический. Черты типичного океана присущи некоторым центральным частям Полярного бассейна - Северного Ледовитого океана. Многие характерные признаки океана свойственны Южному Полярному бассейну, который иногда называется Южным океаном.
Крупным самостоятельным элементом Мирового океана являются окраинные моря. Это некоторые участки Полярного бассейна, Дальневосточные моря, отделенные от открытого океана островными дугами - Японское, Восточно-Китайское, Южно-Китайское, Филиппинское и др.
В состав Мирового океана входят внутренние моря. Наиболее типичные из них - Черное, Красное, Средиземноморский бассейн, обладающие на значительных площадях океанической корой. Для них характерен мощный осадочный чехол. К этой группе относится и Южный Каспий.
В геотектоническом плане в Мировом океане выделяются:
Внутренние области океанов
- абиссальные равнины, разделяемые подводными поднятиями на океанические котловины;
- внутриплитные поднятия и хребты;
- срединно-океанические хребты;
- трансформные разломы;
Переходные зоны между континентами и океанами
- Активные окраины:
-- глубоководные желоба;
-- островные дуги;
-- задуговые бассейны окраинных морей;
- Пассивные окраины
Рассмотрим строение основных геоструктурных элементов океана.
Внутренние области океанов Абиссальные равнины. Океанические котловины
Преобладающим элементом строения океанского ложа являются абиссальные равнины, расположенные между срединно-океанскими хребтами и континентальными подножиями. Они подстилаются нормальной океанической корой, толщина которой постепенно увеличивается по направлению к континентам, за счет увеличения мощности осадочного слоя. По возрасту и особенностями строения кора соответствует <молодым> и <старым> океаническим плитам. Поверхность дна абиссальных равнин иногда плоская, в других случаях в региональном плане характеризуется холмистым или грядовым рельефом. Глубина океана от 4 до 6 км.
Абиссальные равнины разделяются подводными хребтами, трансформными разломами и поднятиями на отдельные котловины, имеющие иногда округло-овальную форму.
В Атлантическом океане к западу от срединно-океанского хребта расположены Северо-Американская, Бразильская и Аргентинская котловины, ограниченные с запада континентальными окраинами Американских континентов. К востоку - Западно-Европейская, Канарская, Сьерра-Леоне, Гвинейская, Ангольская и Капская котловины (рис. II.1) охватывают площади, относящиеся к <молодым> и <старым> океаническим плитам, то есть возраст подстилающей эти котловины коры изменяется от 26 млн лет вблизи САХ до 170 млн лет в направлении к континентам. Остальные котловины располагаются на фундаменте <молодых> и переходных океанических плит. Участок <старых> плит присутствует в виде небольших фрагментов, примыкающих к континентам в Аргентинской и Капской котловинах. Границы котловин определяются системами поднятий, часть из которых выступает над поверхностью воды в виде отдельных островов (острова Сан-Томе, Святой Елены на границе Гвинейской и Ангольской котловин) или архипелагов (о-ва Зеленого Мыса на юге
Канарской котловины). В котловинах прослеживаются продолжения трансформных разломов. Иногда эти разломы служат границами котловин. Так граница между котловинами Сьерра-Леоне и Гвинейской проводится по поднятиям, связанным с разломной зоной Романш. Северная граница Бразильской котловины проводится по серии поднятий, связанных с разломами Романш и Сан-Паулу. Ее южная граница с Аргентинской котловиной проводится по разлому Рио-Гранди и поднятию того же названия.
В других случаях границами котловин служат хребты и цепочки подводных гор несрединно-океанического типа. Такие границы на северо-западе и юго-востоке имеет Ангольская котловина. На северо-западе это цепочка подводных гор и островов, сочленяющаяся с горами Адамава на Африканском континенте, на юго-востоке - Китовый хребет, не имеющий явного продолжения на суше. Доминирующая глубина океана в котловинах около 5 км. Поверхность дна мелко холмистая или мелко грядовая. Маломощный осадочный чехол (до первых сотен метров) сложен кайнозойскими карбонатными, глинистыми и кремнистыми осадками.
В связи с океаническим оруденением значительно полнее изучены котловины Индийского океана. К западу от Аравийско-Индийского хребта расположены Сомалийская, Маскаренская и Мадагаскарская котловины, ограниченные с запада африканской и мадагаскарской континентальными окраинами. Сомалийская котловина располагается на старой океанической плите. Западная ее часть представляет собой абиссальную равнину, восточная осложнена горным массивом с подводной горой Экватор. От Маскаренской котловины она отделена Маскаренским поднятием с архипелагами Сейшельских, Амирантенских и др. островов. В южной части Индийского океана на молодой океанической плите располагается котловина Крозе. С северо-востока и северо-запада она примыкает к отрогам срединно-океанических хребтов, соединяющихся в точке тройного сочленения. На юге ограничена поднятиями (плато) Крозе и Кергелен (см. рис.II.1).
Восточнее срединно-океанического хребта выделена и подробно изучена советскими (российскими) и индийскими экспедициями Центральная котловина. Ее западная граница проходит в южной части по подножию срединно-океанического хребта, а в северной - по Мальдивскому хребту несрединно-окенического типа. Восточная граница проходит по отчетливо выраженному в рельефе Восточно-Индийскому также несрединно-океаническому хребту. В южной части котловины, где она граничит с Аравийско-Индийским хребтом, прослеживается продолжение трансформных разломов, пересекающих хребет. В северной половине, где границы не связаны со срединно-океаническим хребтом, следы разломов не проявляются.
Рис. II.1. Схема расположения срединно-океанических хребтов и абиссальных котловин в Мировом океане.
Эти котловины расположены в кайнозойской части океана.
Восточнее Восточно-Индийского хребта выделяются Кокосовая и Западно-Австралийская котловины, разделенные серией поднятий генерального широтного направления. Кокосовая котловина ограничена с северо-востока Яванским желобом, Западно-Австралийская примыкает к континентальной окраине Австралии. Через обе котловины вдоль 99? восточной долготы проходит вулканический хребет Инвестигейтор. На восточной окраине Западно-Австралийской котловины, где зафиксированы фрагменты более древнего основания, скважинами DSDP вскрыты верхне- и даже нижнемеловые отложения. По-видимому, Кокосовая и Западно-Австралийская котловины - это котловины на мезозойском основании.
В Тихом океане к Восточно-Тихоокеанскому поднятию с востока примыкают котловины Бауэр, Перуанская и Чилийская. Котловина Бауэр с севера ограничена разломом Галапагос и архипелагом того же названия. С Южноамериканской континентальной окраиной эта котловина не граничит. Ее юго-восточная граница с Перуанской котловиной проводится по разлому Менданья. Граница между Перунской и Чилийской котловинами проводится по хребту Сала-и-Гомес, обусловленному, по-видимому, трансформным разломом Пасхи, и хребту Наска. На востоке эти котловины граничат с Перуанским и Чилийским желобами, выделяемыми лишь в последнее время. Осложняющие элементы рельефа Перуанской и Чилийской котловин ориентированы в направлении, близком к меридиональному (см. рис.II.1).
Западнее срединно-океанического хребта выделяется единая гигантская Северо-Восточная котловина. С севера она ограничена Алеутским желобом. На юге простирается до Южного тропика, где поднятие Туамоту почти смыкается с фланговой зоной ВТП. Ее западная граница проходит по цепи крупных подводных поднятий (Императорский хребет, горы Музыкантов) и архипелагов (Гавайи, Лайн). Эта котловина, как и Центральная котловина Индийского океана, изучена наиболее подробно как советскими (российскими), так и зарубежными исследователями в связи с наличием в ней крупных скоплений железомарганцевых образований.
Вся котловина рассечена серией трансформных разломов, северные из которых достигают континента и несколько смещают крупные геоморфологические элементы суши. Южные, начиная с разлома Кларион, пересекают Восточно-Тихоокеанское поднятие и прослеживаются в восточной группе котловин. Южнее Клариона это Клиппертон, Галапагос, Маркизский.
Южнее Северо-Восточной котловины к югу от Южного тропика выделяется Южная котловина. Восточная ее граница проходит по подножию Восточно-Тихоокеанского поднятия, западная - по глубоководным желобам Кермадек и Тонга. В целом Южная котловина характеризуется теми же закономерностями, что Северо-Восточная.
Описанные котловины расположены на кайнозойском основании.
Западнее системы подводных поднятий и архипелагов, ограничивающих Северо-Восточную котловину, выделяются Северо-Западная, Центральная, Меланезийская котловины и ряд более мелких отрицательных структур дна, часть из которых тоже именуется котловинами - Восточно-Марианская, Восточно-Каролинская, Западно-Каролинская. Котловинами на картах Мирового океана называются Филиппинская и Западно-Марианская впадины, расположенные в окраинных морях.
Эти котловины существенно отличаются от рассмотренных выше структур. Все они располагаются на коре более древнего возраста, на так называемой старой океанической плите, на мезозойском основании. В отличие от котловин Атлантики, западной части Индийского и Восточной части Тихого океане, где осадочные образования обычно не древнее палеоцена, на границе Северо-Западной и Восточно-Марианской котловин - на поднятиях Маркус-Уэйк-Неккер и Магеллановых горах присутствуют верхнеюрские отложения. В этих котловинах не проявлены трансформные разломы, не развит волнистый (клавишный) рельеф, характерны большие перепады глубин при максимальных отметках более 6 км, изобилие подводных поднятий и плосковершинных гор - гайотов. Гайоты характерны исключительно для этой группы котловин.
Итак, согласно современным мобилистским представлениям, океанические котловины располагаются на абиссальных плитах, характеризуются типичной океанической корой спрединговой природы. С. Андреев и его соавторы выделяют два типа океанических плит. Старые плиты формировались на раннем этапе развития Мирового океана от заложения в средней юре (бат - 171 млн лет) до нижнего мела (апт - 119 млн лет). Этот период, охватывающий около 50 млн лет, характеризовался одновременным функционированием нескольких различно ориентированных и разобщенных аккреционных зон. Мощность плит составляет 6,7-8 км, мощность осадочного чехла от 0,5 до 1,0 км и более. Базальты старых океанических плит относятся к толеит-базальтовой парагенетической ассоциации. Молодые океанические плиты формировались в период от кампана до олигоцена (свыше 50 млн лет), когда установился и действовал единообразный режим линейно-упорядоченного спрединга. Мощность плит 5,7-6,5 км, осадочный чехол имеет мощность 0,1-0,2 км. Типоморфная ассоциация вулкани
тов молодых плит соответствует в целом базальт-ферробазальтовому магматическому комплексу.
В металлогеническом отношении океанические котловины представляют интерес прежде
29-04-2015, 01:01