по Материаловедению

перестаривания является коагуляция дисперсных выделений из раствора, которая заключается в растворении более мелких и росте более крупных частиц выделившейся фазы. В результате коагуляции расстояние между этими частицами возрастает и торможение дислокаций в зёрнах твёрдого раствора уменьшается. Одни сплавы, например дуралюмины, после закалки сильно упрочняются уже во время выдержки при комнатной температуре (естественное старение).

Большинство сплавов после закалки нагревают, чтобы ускорить процессы распада пересыщенного твёрдого раствора (искусственное старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой температуре. Старение применяют главным образом для повышения прочности и твёрдости конструкционных материалов (алюминиевых, магниевых, медных, никелевых сплавов и некоторых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и температуры старения колеблется от десятков мин до нескольких сут.

Отпуску подвергают сплавы, главным образом стали, закалённые на мартенсит. Основные параметры процесса — температура нагрева и время выдержки, а в некоторых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске та же, что и при старении, — распад термодинамически неустойчивого пересыщенного раствора.

Отличие отпуска от старения связано прежде всего с особенностями субструктуры мартенсита, а также с поведением углерода в мартенсите закалённой стали.

Для мартенсита характерно большое число дефектов кристаллического строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначительное упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одновременным ростом пластичности и ударной вязкости. Отпуск безуглеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллических соединений. Причина упрочнения при этом та же, что и при старении. Термины «отпуск» и «старение» часто используют как синонимы.

10 Как влияют примеси в сталях на их свойства?

Полезные примеси - кремний и марганец. Кремний , если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает. При повышении содержания кремния значительно улучшаются упругие свойства, магнитопроницаемость, сопротивление коррозии и стойкость против окисления при высоких температурах.

Марганец , как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. Однако марганец образует с железом твердый раствор и несколько повышает твердость и прочность стали, незначительно уменьшая ее пластичность. При высоком содержании марганца сталь приобретает исключительно большую твердость и сопротивление износу.

Постоянные примеси , от которых зависит качество стали, - сера и фосфор. Сера является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, - свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. Увеличение хрупкости стали при повышенном содержании серы используется иногда для улучшения обрабатываемости на станках, благодаря чему повышается производительность при обработке.

Фосфор также является вредной примесью. Он образует с железом соединение Fe3P, которое растворяется в железе. Кристаллы этого химического соединения очень хрупки. Обычно они располагаются по границам зерен стали, резко ослабляя связь между ними, вследствие чего сталь приобретает очень высокую хрупкость в холодном состоянии (хладноломкость). Особенно сказывается отрицательное влияние фосфора при высоком содержании углерода. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Газы , присутствующие в стали, образуют химические соединения, в свободном состоянии находятся в порах или в виде твердых растворов — в феррите.

Кислород и азот дают хрупкие неметаллические включения, снижают вязкость и пластичность стали.

Водород находится в твердом растворе и значительно увеличивает хрупкость стали, способствует образованию внутренних трещин в хромистых и хромоникелевых сталях (флокены).

11 Какие легирующие элементы способствуют повышению прокаливаемости сталей?

Ведущая роль легирующих элементов в сталях заключается и в существенном повышении их прокаливаемости. Основными легирующими элементами этой группы сталей являются хром (Cr), марганец (Mn), никель (Ni), молибден (Mo), ванадий (V) и бор (В). Содержание углерода (С) в легированных конструкционных сталях — в пределах 0.25-0.50 %.

Бор увеличивает прокаливаемость стали, делает сталь чувствительной к перегреву.

Хром повышает твердость, прочность и износоустойчивость. При содержании более 14% повышаются жаропрочность, жаростойкость и антикоррозионность. Вольфрам, ванадий и молибден измельчают зерно, резко повышают красностойкость быстрорежущей легированной стали.

Никель повышает прочность, вязкость, упругость и электросопротивление продукции и понижает коэффициент ее линейного расширения. В сочетании с хромом он является наиболее распространенным легирующим элементом.

Кремний способствует получению более однородной и плотной структуры. При высоком содержании (15-20%) металл становится кислотоупорным, а при 2-4% - склонным к магнитным превращениям.Все названные выше элементы увеличивают прокаливаемость легированных сталей.

Хромомарганцевые стали. Совместное легирование хромом (0.9-1.2%) и марганцем (0.9-1.2%) позволяет получить стали с достаточно высокой прочностью и прокаливаемостью.

Хромоникелевые стали обладают высокой прокаливаемостью, хорошей прочностью и вязкостью. Они применяются для изготовления крупных изделий сложной конфигурации, работающих при динамических и вибрационных нагрузках.

12 Сопоставьте свойства углеродистых и легированных инструментальных сталей

К инструментальным сталям относятся стали, используемые для обработки материалов резанием и давлением. По химическому составу различают инструментальные углеродистые стали и инструментальные легированные стали.

Инструментальные углеродистые стали содержат от 0,7 до 1,3 процента углерода, обладают высокой твердостью, относительно невысокой стоимостью, но недостаточной износостойкостью и красностойкостью. В основном используются для ручного инструмента или для изготовления металлообрабатывающего инструмента, который во время работы не подвергается воздействию высоких температур.

Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурных нагревах. При нагреве выше 200°С инструмент из углеродистой стали теряет твердость.

Легированные инструментальные стали . Легирующие элементы, вводимые в инструментальные стали, увеличивают теплостойкость (вольфрам, молибден, кобальт, хром), закаливаемость (марганец), вязкость (никель), износостойкость (вольфрам), обеспечивают высокую твердость и красностойкость.

Недостатком легированных инструментальных сталей является высокая стоимость.

В сравнении с углеродистыми легированные инструментальные стали имеют следующие преимущества: хорошую прокаливаемость; большую пластичность в отожженном состоянии, значительную прочность в за­каленном состоянии, более высокие режущие свойства.

13 Назовите основные легирующие элементы, обеспечивающие сталям высокие антикоррозионные свойства

Коррозионностойкие стали . Коррозионностойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрессивных средах. Коррозионностойкие стали получают легированием низко- и среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали.

Хромистые стали более дешевые, однако хромоникелевые обладают большей коррозионной стойкостью. Содержание хрома в нержавеющей стали должно быть не менее 12%. При меньшем количестве хрома сталь не способна сопротивляться коррозии, так как ее электрохимический потенциал становится отрицательным.

Межкристаллитная коррозия — особый, очень опасный вид коррозионного разрушения металла по границам аустенитных зерен, когда электрохимический потенциал пограничных участков аустенитных зерен понижается вследствие обеднения хромом. Для предотвращения этого вида коррозии применяют сталь, легированную титаном.

Хромоникелевые стали содержат большое количество хрома и никеля, мало углерода и относятся к аустенитному классу. Для получения однофазной структуры аустенита сталь закаливают в воде при температуре 1100-1150°С; при этом достигается наиболее высокая коррозионная стойкость при сравнительно невысокой прочности. Для повышения прочности сталь подвергают холодной пластической деформации и применяют в виде холоднокатаного листа или ленты для изготовления различных деталей.

Хромоникелевые нержавеющие стали аустенитного класса имеют большую коррозийную стойкость, чем хромистые стали, их широко применяют в химической, нефтяной и пищевой промышленности, в автомобилестроении, транспортном машиностроении, в строительстве.

Для экономии дорогостоящего никеля его частично заменяют марганцем.

Разработаны марки высоколегированных сталей на основе сложной системы Fe—Cr—Ni—Mo—Сu—С. Коррозийная стойкость хромоникель-молибденомеднистых сталей в некоторых агрессивных средах очень велика. Например, в 80%-ных растворах серной кислоты.

14 Какие структуры стали обеспечивают её немагнитные свойства?

Наибольшее распространение, благодаря высоким механическим свойствам, износостойкости и долговечности, получили металлические немагнитные материалы, главным образом немагнитные стали и чугуны, а также сплавы меди и алюминия. Немагнитность сталей и чугунов обеспечивается созданием в них структуры Аустенита, что достигается соответствующим легированием. Аустенитная стальявляется наиболее широко распространенным типом нержавеющей стали. Содержание никеля в такой стали - не менее 7%, что придает ей пластичность, широкий спектр режимов термостойкости, немагнитные свойства и хорошую пригодность к сварке.

Лучшими технологическими свойствами обладают хромоникелевые немагнитные стали, выпускаемые в виде листов, проволоки и лент. Типичный состав и свойства немагнитной стали с высокой коррозионной стойкостью: до 0,12% С, до 0,8% Si, 1—2% Mn, 17—19% Cr, 11—13% Ni; μ = 1,05—1,2; предел прочности при растяжении 500—600 Мн/м2 (50—60 кгс/мм2 ); относительное удлинение при разрыве 40—5

Немагнитная сталь применяется в приборах, где ферромагнитные материалы могут повлиять на точность показаний

15 В каком виде может присутствовать графит в чугунах?

Составляющая структуры чугуна, формированного при кристаллизации или термической обработке, имеет ту же гексагенновую, кристаллическую решетку слоистого типа, что и природный графит

В зависимости от формы включений различают: пластинчатый, вермикулярный — червеобразный, хлопьевидный и шаровидный графит. Эти формы свободного графита определяют основные типы чугунов: серый чугун (СЧ), чугун с вермикулярным графитом (ЧВГ), ковкий чугун (КЧ), высокопрочный чугун с шаровидным графитом.

Борированный графит - получен из смеси карбонизов углеродных материалов и бора; имеет более совершенную структуру, повышает электропроводность и прочность, т.к. бор, кроме образования карбидной фазы, замешает атомы углерода в слое и является легированной примесью акцепторного типа;

Вермикулярный графит - графит, мелкие округлые частицы которого, образуют червеобразные скопления; структурная составляющая высокопрочных чугунов;

Доменный графит – кристаллический графит, выделяющийся при медленном охлаждении больших масс чугуна, например в чугуновозных ковшах, миксерах и др.;

Карбидный графит — кристаллический, выделяющийся при термическом разложении карбидов;

Компактный графит – графит, частицы которого имеют форму дендритов; структурная составляющая ковких чугунов;

Пластинчатый графит - графит с частицами в форме изогнутых пластин; структурная составляющая серых чугунов;

Хлопьевидный графит - графит, образующийся при отжиге белого чугуна с частицами компактной, почти равновесной, но не округлой формы; структурная составляющая ковкого чугуна. Xлопьевидный графит часто называют углеродом отжига;

Шаровидный графит — графит со сферическими частицами. Его часто называют глобулярным. Структурная составляющая высокопрочных чугунов.

16 Какие свойства можно получить за счет легирования и термообработки чугунов?

Для улучшения прочностных, эксплуатационных характеристик или придания чугуну особых свойств (износостойкости, жаропрочности, жаростойкости, коррозионностойкости, немагнитности и т.д.) в его состав вводят легирующие элементы (Ni, Cr, Cu, Al, Ti, W, V, Mo и др.).

Чугун с 5—7% Si (силал) применяется в качестве жаростойкого материала. Чугун с 12—18% Si (ферросилид) обладает высокой коррозионной стойкостью в растворах солей, кислот (кроме соляной) и щелочей. Такой чугун, легированный молибденом (антихлор), характеризуется высокой стойкостью в соляной кислоте. Чугун с 19—25% Al (чугаль) обладает наибольшей по сравнению с известными чугунами жаростойкостью в воздушной среде и средах, содержащих серу. В качестве износостойких наибольшее распространение получили чугуны, легированные Cr (до 2,5%) и Ni (до 6%) — нихарды. Аустенитные никелевые чугуны, легированные Mn, Cu, Cr (нирезисты), применяются как коррозионностойкие и жаропрочные.

Для повышения механических свойств чугуна применяют следующие виды термообработки: отжиг, нормализация, закалка и отжиг.

Низкотемпературный отжиг выполняют при температуре 950 – 1000°С с выдержкой в течение до четырех часов и охлаждением с печью. Применяется для повышения обрабатываемости чугуна, а при длительной выдержке – для получения ковкого чугуна.

Нормализация (нагрев до температуры 820 - 900°С с последующим охлаждением на воздухе) применяется для повышения износостойкости и прочности чугуна.

Закалка (нагрев до 830 - 900°С) применяется для повышения твердости, износостойкости, предела прочности и упругости. Закаленный чугун подвергается низкотемпературному (180 - 250°С) или высокотемпературному (400 - 600°С) отпуску для снятия внутренних напряжений, повышения пластичности и прочности.

17 Как называются основные группы сплавов меди?

Различают три группы медных сплавов: латуни, бронзы, сплавы меди с никелем.

Латуни . Латунями называют двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк.

В сравнении с медью латуни обладают большей прочностью коррозионной стойкостью и лучшей обрабатываемостью (резанием литьем давлением). Латуни содержат до 40-45% цинка. При большем содержании цинка снижается прочность латуни и увеличивается ее хрупкость Латуни широко применяют в общем и химическом машиностроении.

Бронзы . Сплавы меди с оловом, алюминием, кремнием, марганцем, свинцом, бериллием называют бронзами. В зависимости от введенного элемента бронзы называют оловянными, алюминиевыми и т.д.

Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатываемостью резанием. Для повышения механических характеристик и придания особых свойств бронзы легируют железом, никелем, титаном, цинком, фосфором. Введение марганца способствует повышению коррозионной стойкости, никеля - пластичности, железа — прочности, цинка -улучшению литейных свойств, свинца — улучшению обрабатываемости

Сплавы меди с никелем . Медноникелевые сплавы — это сплавы на основе меди, в которых основным легирующим компонентом является никель:

Куниалu (медь -никель -алюминий) содержат 6—13% никеля, 1,5-3%

алюминия, остальное — медь. Куниали служат для изготовления деталей повы­шенной прочности, пружин и ряда электромеханических изделий.

Нейзильберы (медь - никель - цинк) содержат 15% никеля, 20% цинка, остальное - медь. Они хорошо сопротивляются атмосферной коррозии; применяют в приборостроении и производстве часов.

Мельхиоры (медь — никель и небольшие добавки железа и марганца до 1 %) обладают высокой коррозионной стойкостью, в частности в морской воде. Их применяют для изготовления теплообменных аппаратов, штампованных и чеканных изделий.

Капель (медь - никель 43% — марганец 0,5%) - специальный сплав с высоким удельным электросопротивлением, используемый в электротехнике для изготовления электронагревательных элементов.

Константан (медь — никель 40% — марганец 1,5%).

18 Перечислите деформируемые титановые сплавы и их основные характеристики

К деформируемым титановым сплавам относятся:

1) Титановые сплавы невысокой прочности и повышенной пластичности. Эти сплавы отличаются высокой пластичностью как в горячем, так и в холодном состоянии, что позволяет получать все виды полуфабрикатов: фольгу, ленту, листы, плиты, поковки, штамповки, профили, трубы и т.п.

Эти сплавы хорошо свариваются сваркой плавлением (аргонодуговая, под флюсом, электрошлаковая) и контактной (точечная, роликовая). При сварке плавлением прочность и пластичность сварного соединения практически аналогичные основному металлу.

Коррозионная стойкость данных сплавов высокая во многих средах (морская вода, хлориды, щелочи, органические кислоты и т.п.), кроме растворов HF, H2 SO4 , HCl и некоторых других.

2) Титановые сплавы средней прочности. Рассматриваемые сплавы, наряду с повышенной прочностью, сохраняют удовлетворительную пластичность в холодном состоянии и хорошую пластичность в горячем состоянии, что позволяет получать из них все виды полуфабрикатов: листы, ленту, профили, поковки, штамповки, трубы и др. Исключение составляет сплав ВТ5, из которого листы и плиты не изготавливают из-за невысокой технологической пластичности.

На эту категорию сплавов приходится основной объем производства полуфабрикатов, применяемых в машиностроении. Механические характеристики основных полуфабрикатов приведены в табл.

Все среднепрочные сплавы хорошо свариваются всеми видами сварки, применяемыми для титана. Прочность и пластичность сварного соединения, выполненного сваркой плавлением, близка к прочности и пластичности основного металла. После сварки рекомендован неполный отжиг для снятия внутренних сварочных напряжений.

Обрабатываемость резанием этих сплавов хорошая. Коррозионная стойкость в большинстве агрессивных сред аналогична техническому титану ВТ1-0.

3) Высокопрочные титановые сплавы. Указанные сплавы наряду с высокой прочностью сохраняют хорошую и удовлетворительную технологическую пластичность в горячем состоянии, что позволяет получать из них различные полуфабрикаты: листы, прутки, плиты, поковки, штамповки, профили и др. Несмотря на гетерофазность структуры, рассматриваемые сплавы обладают удовлетворительной свариваемостью всеми видами сварки, применяемыми для титана.

Обрабатываемость резанием удовлетворительная. Обработку резанием сплавов можно проводить как в отожженном, так и в термически упрочненном состоянии.

Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах, как и технический титан.

Особенность высокопрочных титановых сплавов как конструкционного материала — их повышенная чувствительность к концентраторам напряжения. Поэтому при конструировании деталей из этих сплавов необходимо учитывать ряд требований (повышенное качество поверхности, увеличение радиусов перехода от одних сечений к другим и т. п.), аналогичных тем, которые существуют при применении высокопрочных сталей.

19 Благодаря каким фазам подвергаются химической обработке высокопрочные магниевые сплавы?

Оксидирование магниевых сплавов - химическая обработка магниевых сплавов в растворах,создающих на поверхности защитные пленки. Обычно процесс ведется при погружении деталей в раствор, но на отдельных участках можно создавать пленку, наливая раствор или натирая участки, подлежащие оксидированию, ватным или марлевым тампоном, смоченным раствором (местное оксидирование).

Основное назначение пленок — защита магниевых сплавов от коррозии и повышение адгезии лакокрасочных покрытий к металлу. Широко используются в промышленности методы получения пленок в растворах, содержащих хромовые соли. Окраска пленок меняется от золотистой до


29-04-2015, 01:03


Страницы: 1 2 3
Разделы сайта