Электроразведочные работы, как и магниторазведочные будут проводиться в масштабе 1:2000. По результатам проведенных работ будут построены карты изолиний кажущегося сопротивления и произведена их интерпретация.
Также будут определены пространственные положения и формы объектов, создающих аномалии, а также установление их геологической природы. Работы будут проводиться по профилям, прорубленным для металлометрического опробования.
Гравиметрический метод используется для выявления положительных и отрицательных аномалий силы тяжести. Как косвенный метод гравиметрический метод применяется для выявления и оконтуривания тектонических депрессий, иногда продуктивных на уголь, бокситы и золото.
Радиометрические методы основаны на измерении естественной радиоактивности горных пород и минералов. Радиометрические методы применяются как прямые так и косвенные методы поисков. Одним из отрицательных качеств радиометрического метода является малая глубинность съемки, которая колеблется в диапазоне от нескольких сантиметров до нескольких метров. Поэтому применение радиометрии при поисковых работах на золото играет роль вспомогательного метода.
Результаты геофизических исследований будут сопоставлены с результатами горно-буровых работ, что облегчит интерпретацию геологического строения площади детализации и, в случае получения положительных результатов, поможет при дальнейшем проектировании работ.
3.7. БУРОВЫЕ РАБОТЫ
1. Горно-буровые работы используются на стадии поисков и поисково-оценочных работ. Горные выработки располагаются по поисковым линиям. Расстояние между поисковыми линиями определяется установленной протяженностью рудных залежей, а густота выработок выбирается с учетом, что бы не пропустить промышленно значимые рудные тела.
С учетом малой мощности рыхлых отложений, выполнение поисковых работ методом проходки шурфов и траншей на участках детализации нецелесообразно. В связи с этим горной выработкой данного вида съемки будут являться канавы (. Все поверхностные горные выработки будут располагаться вкрест простирания главного рудовмещающего разлома.
По итогам горнопроходческих работ должны будут получены необходимые данные для оценки целесообразности дальнейших поисковых работ, в частности бурения скважин.
При поисках месторождений жильного типа, бурение скважин должно осуществляться через 200-400 м. В соответствии с этим данным проектом запланированы буровые работы по профилям расположенным через 400 м. Это позволит обеспечить минимально необходимым количеством скважин, подсечь изучаемую структуру по всей длине ее простирания. Это необходимо для получения данных, с помощью которых составляется план дальнейших работ.
Для золоторудных месторождений,минимальный диаметр при котором возможно опробование керна методом деления пополам, составляет 76 мм. При таком диаметре бурения, диаметр керна составит 59 мм. При бурении скважин будут применяться станки колонкового бурения СКБ-4 на самоходной базе с использованием одинарных колонковых снарядов с коронками твердосплавного типа. В качестве промывочной жидкости будет использоваться глинистый раствор пониженного качества. Выход керна должен будет составлять не менее 80 %. По окончании бурения скважины затампонируются глинистым раствором. Весь отобранный керн будет складываться в ящики и транспортироваться на базу, где будет производиться его документация. Следуя указаниям п.3.5. ГКЗ-2005 для золоторудных месторождений,документация будет осуществляться в масштабе 1:50. По итогам бурения будет оценена перспективность дальнейших исследований.
3.7.1. ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ В СКВАЖИНАХ
Главными целями применения геофизических методов исследования скважин являются:
· литологическое расчленение разреза
· выявление рудных интервалов, их глубины и мощности
· определение элементарного состава руд
· Корреляция разрезов скважин, уточнение строения рудной толщи;
· Определение угла наклона искривленных скважин;
Исследование скважин будет проводиться методом электрического каротажа и методом ядерно-геофизического каротажа. Будет выполняться комплекс ГИС, включающий методы бокового каротажа БК (рк,бк), ядерно-магнитного каротажа ЯМК, кавернометрию и инклинометрию в масштабе 1:200. В детализационном масштабе 1:50 - те же методы.
Электрокаротаж скважин будет производиться методом кажущихся сопротивлений (КС). Основной задачей каротажа КС будет являться расчленение разреза. Метод позволит надежно выявить контакты пород разного сопротивления. В нашем случае применение метода основано на наличии пород, отличающихся удельным электрическим сопротивлением. Например, средние и кислые породы обладают удельным электрическим сопротивлением (ρ) в диапазоне 103 -104 Ом·м в то время, как песчаники – 10-103 Ом·м, интервалы обогащенные сульфидами отличатся пониженным удельным электрическим сопротивлением (ρсульфидов колеблется от 10-4 до 10 Ом·м) [3, с. 76]. Таким образом данный метод позволит отделить интервалы сложенные породами среднего состава от пород осадочного происхождения, а так же выявить зоны сульфидизации.
Так как изменение кажущегося сопротивления по скважине во многом определяется ее диаметром и сопротивлением глинистого раствора, то для учета влияния скважинных условий будет производиться кавернометрия (измерение диаметра скважин) и резистивиметрия (определение сопротивления глинистого раствора). По итогам этих работ в результаты каротажа КС будут вводиться соответствующие поправки.
По итогам каротажа КС будут построены кривые изменения кажущегося сопротивления с глубиной скважины, по которым будет производиться расчленение разреза.
Из ядерно-геофизических методов исследования скважин, данным проектом предусмотрено проведение рентгенорадиометрического каротажа. Данный метод необходим для локализации рудных интервалов в скважинах по наличию характерных элементов. Главной задачей рентгенорадиометрического каротажа будет полуколичественное определение во вмещающих породах золота, мышьяка, сурьмы и серебра. В результате рентгенорадиометрических исследований будут выявляться интервалы, по которым будет производиться отбор проб. Это избавит от необходимости опробования всего керна целиком и значительно сократит время затрачиваемое на аналитические работы.
Для определения зенитного угла скважин будет выполняться инклинометрия прибором МИР-36 с шагом 10 м.
3.8. ОПРОБОВАНИЕ
Наиболее важными целями опробования в горных выроботках являются:
· выявление первичных ореолов рассеяния и определение их мощности
· определения среднего содержания полезного компонента в рудах
· предварительной оценки изменчивости их распределения во вмещающих породах.
Скважины и канавы на территории исследуемого района будут опробоваться керновым и бороздовым методами опробования.
3.8.1. БОРОЗДОВОЕ ОПРОБОВАНИЕ
По полотну канав будет проводиться бороздовое опробование. Опробование будет выполняться в направлении максимальной изменчивости геологического строения, то есть вкрест простирания вскрываемых структур.
Для золоторудного месторождения, опробование будет осуществляться сплошной бороздой на полную мощность рудного тела с полным выходом во вмещающие породы. Исходя из этого, длина борозды и будет определяться.
Сечение борозды определяем исходя из мощности рудных тел и степени равномерности распределения полезного компонента и составит 3×9 см2 . Объёмная масса пород, слагающих площадь Зун-Холбинского месторождения составляет 2,63 г/см3 . Исходя из этого, рассчитываем среднюю массу бороздовой пробы по следующей формуле:
М = S×l×d,
где S – сечение борозды, равное 27 см2 ; l – длина пробы, равная 70 cм; d – объёмная масса руды, 2,63 г/см3 .
Таким образом, М составит:
М = 27×70×2,63 = 4970,1 г = 4,97 кг
Опробование будет осуществляться механизированным способом, с помощью алмазных пил. Перед проходкой борозды, полотно канав будет зачищаться.
3.8.2. КЕРНОВОЕ ОПРОБОВАНИЕ
Опробование скважин будет осуществляться с целью определения содержаний полезного компонента на глубине.
Интервалы опробования будут определены по результатам электрометрического каротажа. Вдоль оси, керн будет делиться на две половины с помощью алмазной пилы. Одна половина будет отправляться в пробу, вторая – на кернохранилище. В случае необходимости, вторая половина керна будет использована для дополнительных исследований скважин.
В соответствии с этим массу керновых проб (М ) определяем по формуле:
М = π D 2 /8× l × d = 3,14×34,81/8×100×2,63 = 3 593,3 г = 3,59 кг
где π = 3,14; D – диаметр керновой пробы, равный 5,9 см; l – длина пробы, равная 100 см; d – объемная масса руды, равная 2,63 г/см3 .
Все результаты опробования будут вноситься в первичную документацию и сверяться с геологическим описанием.
3.9. ОБРАБОТКА ПРОБ
Процесс обработки проб будет включать дробление и измельчение, грохочение, перемешивание и сокращение.
Измельчение пробы будем производить до получения частиц диаметром 0,075 мм. Просеивание будет осуществляться на механических грохотах. Смешивание планируется производить трехкратным перемешиванием по методу кольца и конуса.
Для сокращения проб данным проектом предполагается использование квартования. Для рационального анализа минимальная масса должна составлять от 200 до 1000 г [2].
Просеивание будет осуществляться на механических грохотах.
Смешивание планируется производить трехкратным перемешиванием по методу кольца и конуса.
Для сокращения проб данным проектом предполагается использование желобкового делителя. Для рационального анализа минимальная масса должна составлять 300 г.
Обработка проб будет выполняться по схемам составленным на основании использования формулыРичардса-Чеччета:
Q = k × d 2 ,
где Q – масса исходной пробы; k – коэффициент определяющийся характером распределения полезного компонента, для нашего случая, с учетом весьма неравномерного его распределения принимаем k = 0,7.
При составлении схемы учитываем, что дробление и измельчение пробы необходимо производить до тех, пока масса рассчитанная по формуле Ричардса-Чеччета при диаметре частиц полученном на данной стадии измельчения, не будет меньше исходной массы пробы более чем в два раза.
В общем виде схема обработки бороздовых проб представлена на рисунке 2, схема обработки керновых проб – на рисунке 3.
Рис.2
Рис.3 Схема обработки керновых проб
3.10 Аналитические исследования геологических проб
Данным проектом предусматривается проведение аналитических исследований для определения золота, а так же для установления химических характеристик руд и вмещающих пород. Для осуществления данного вида исследования будут производиться спектральный полуколичественный и пробирный анализы.
Спектральный полуколичественный анализ необходим для наиболее полного определения химического состава руд и пород. Анализу будут подвергаться все отобранные пробы.
Пробирный анализ будет производиться для количественного определения золота в рудах. На данный вид анализа будут отправляться пробы, в которых по результатам спектрального полуколичественного анализа обнаружилось содержание золота в количестве не менее 0,2 г.
Также данным проектом предполагается проведение фазовых анализа методом оптической микроскопии. Изучение шлифов позволит определить минеральный состав вмещающих оруденение пород, установить особенности метасоматических изменений, выяснить взаимоотношения породообразующих минералов. Главной задачей исследований аншлифов будет являться установление по текстурно-структурным особенностям последовательности и условий образования рудных минералов. Так как, в основной своей массе золото находиться в тонкодисперсной форме с преобладающим размером зерен менее 10 мкм, то для изучения текстурно-структурных особенностей на микроуровне данным проектом предполагается проведение исследования методом электронной микроскопии.
В целом проведение исследований фазового состава и текстурно-структурных особенностей руд позволит предварительно оценить их технологические свойства, а также установить особенности формирования месторождения.
3.11 Методика контроля
С целью получения достоверных результатов выполняемых работ исследованиям необходимо будет строго соблюдать все правила и рекомендации по проведению геологоразведочных работ. Для этого будет производиться контроль пробоотбора, контроль обработки проб и контроль аналитических работ.
3.11.1 Контроль пробоотбора
Для контроля опробования горных выработок будут выполняться следующие рекомендации:
1. Проверка соответствия расположения проб и их параметров условиям залегания, морфологии, внутреннему строению и изменчивости руд;
2. Должна будет соблюдаться равномерность пробоотбора по всей длине борозд, с соблюдением постоянства их сечения;
3. При каждом пробоотборе будет выполняться проверка соответствия фактической и теоретической массы проб. В соответствии с указаниями п. 3.6.3. ГКЗ-2005 для золоторудных месторождений, с учетом изменчивости плотности руд, допускается отклонение массы отобранной пробы от рассчитанной на ± 20 %. Таким образом, допускается изменение массы бороздовой пробы в пределах от 6,24 кг до 9,36 кг, масса керновых проб может варьировать в пределах от 2,84 кг до 4,26 кг.
4. Для того, чтобы собранные пробы просыпались, мешки будут плотно завязываться и аккуратно складываться.
5. С целью правильного ведения маркировки, в мешки с пробами будут вкладываться фанерные бирки размером 3см х 4см с заранее написанными номерами.
6. Согласно п. 3.6.3. ГКЗ-2005 для золоторудных месторождений, контроль бороздовых проб будет осуществлять путем проходки сопряженных борозд с сечением 3см х 10см. Контроль кернового опробования будет осуществляться путем отбора проб из вторых половин керна. В соответствии с рекомендациями, объем контрольных проб составит 3 % от общего объема опробования.
3.11.2 Контроль обработки проб
Для контроля обработки проб будут выполняться следующие мероприятия:
1. Систематический контроль за работой породоразделочного цеха;
2. Строгое соблюдение схемы обработки пробы, приведенной выше;
3. Контроль качества работ дробилок и оборудования для сокращения проб;
4. Сравнение результатов анализов параллельно обрабатываемых частных проб, составленных из отходов сокращения с анализами, с анализами основных проб. Для этих целей будет проанализировано 3 % отходов образованных в результате обработки бороздовых и керновых проб, что в общей сложности составит 69 пробы.
3.11.3 Контроль аналитических работ
Для суждения о качестве работ лаборатории будет выполняться контроль анализов проб. С этой целью будет выполняться внутренний и внешний контроль.
Внутренний контроль будет осуществляться в той же лаборатории, в которой будут производиться массовые анализы проб. Для этого в лабораторию, в зашифрованном виде, будут поступать дубликаты некоторых проб, изготовленные из материалов последних отбросов каждой пробы. Пробы с аномальным содержанием золота также будут подвергаться внутреннему контролю. Общее их количество будет не менее 5 %. Внутренний контроль будет проводиться поквартально.
Внешний контроль будет выполняться для своевременного выявления и устранения возможных систематических ошибок в работе основной лаборатории. На внешний контроль будут направлены 3 % проб, прошедших внутренний контроль. Таки образом их общее количество составит 19 проб.
В случае выявления значительных расхождений в результатах опробования, будет проводиться арбитражный контроль. Для этих целей на опробование будут направляться дубликаты рядовых проб, по которым имеются результаты внешних контрольных анализов.
ЗАКЛЮЧЕНИЕ
По ходу выполнения курсовой работы была детально изучена методика поиска и разведки золоторудных месторождений в результате, которого был составлен комплекс поисковых работ. Также изучены критерии и предпосылки рудоносности, методика опробования и обработка.
На основании комплекса поисковых работ будут определены особенности геологического строения Зун-Холбинского месторождения и группа сложности его строения. Также будет определена такая информация как: морфология рудных тел, условия их залегания и вещественный состав полезного ископаемого.
В результате проведения представленного комплекса работ будут составлены геолого-поисковые карты и разрезы, и будет дана геологически обоснованная оценка площадей.
СПИСОК ЛИТЕРАТУРЫ
1. Аристов В.В. Поиски твёрдых полезных ископаемых. – М.: Недра, 1975. 253 с.
2. Коробейников А.Ф., Кузебный В.С. Прогнозирование и поиски месторождений полезных ископаемых. Учебн. для вузов. – Томск: 1998. 309 с.
3. Геофизические методы поисков и разведки/Под ред. В.П. Захарова. – Л.: Недра, 1982. 304 с.
4. Каждан А.Б. Поиски и разведка месторождений полезных ископаемых. Научные основы поисков и разведки: Учебн. для вузов. – М.: Недра, 1984. 285 с.
29-04-2015, 00:45