Обработка результатов по данным геофизических исследований скважин

разреза нефтяных и газовых скважин является:

1) расчленение разрезов на пласты различного литологического состава, определение мощностей и глубин залегания пластов;

2) выделение в разрезе коллекторов и оценка содержания в них нефти и газа [25].

Для решения этих задач широко применяют геофизические методы исследования скважин.

Литологическое расчленение производят по комплексу диаграмм различных геофизических методов. Литологический характер пород определяют по сумме геофизических признаков, установленных по диаграммам различных методов.

Для более точной характеристики литологического состава пород используют данные наиболее полного комплекса геофизических методов, объем которого определяется степенью изученности разреза, типом отложений и скважинными условиями измерений [26].

Для расчленения песчано-глинистого разреза необходимо дополнительно привлекать кривые гамма-метода и бокового метода.

Если вскрытый скважиной разрез представлен карбонатными породами, в комплекс измерений должен обязательно входить нейтронный или акустический методы, обеспечивающий выделение пористых карбонатных пород.

В продуктивных участках разреза, где есть или могут быть встречены нефтегазонасыщенные пласты, для детального изучения коллекторов нефти и газа необходимо дополнительно проводить боковые электрические зондирования, измерения микрозондами, каверномером и т.п.

Важной задачей геофизических исследований нефтяных и газовых скважин является выделение в их разрезах коллекторов и оценка характера их насыщения [26].

Коллекторы определяют, во-первых, по литологическому составу пород, слагающих разрезы. Если по геофизическим данным установлено, что пласты представлены песками, пористыми песчаниками или пористыми карбонатными породами, то такие пласты могут быть отнесены к коллекторам. Во-вторых, коллекторы выделяют по признаку фильтрации в них бурового раствора с образованием глинистой корки на стенки скважины и зоны проникновения в примыкающей скважине части пласта, в которой пластовые жидкости полностью или частично замещены фильтратом бурового раствора. Глинистая корка выявляется по сужению диаметра скважины на кавернограммах и по расхождению двух кривых кажущегося сопротивления на диаграммах микрозондов. Наличие в пласте зоны проникновения, удельное сопротивление которой отличается от удельного сопротивления пласта, устанавливают по данным бокового электрического зондирования, либо по замерам двумя зондами метода сопротивлений, один из которых имеет малый, а другой – большой радиусы исследования.

По данным геофизических методов уверенно выделяются неглинистые коллекторы с межзерновой пористостью (пески, песчаники, высокопористые карбонатные породы). В песчано-глинистых отложениях коллекторы выделяют по диаграммам естественных потенциалов. В условиях, обычно встречающихся на практике, когда минерализация пластовой воды больше минерализации бурового раствора, пласты неглинистых песков и песчаников, являющихся коллекторами, выделяются минимальными, а глины (непроницаемые пласты) – максимальными показаниями на диаграммах естественных потенциалов. Если буровой раствор в скважине сильно минерализован, коллекторы выделяются по диаграммам гамма-метода. На диаграммах гамма-метода глины отмечаются максимальными, песчаные пласты – минимальными показаниями [26].

В песчано-глинистых разрезах встречаются малопористые непроницаемые пласты сцементированных песчаников и плотных карбонатных пород, которые часто не отличаются от проницаемых песчаных пластов по диаграммам естественных потенциалов и гамма-метода.

Для выделения карбонатных коллекторов высокой пористости используют диаграммы гамма-метода, с помощью которых выявляют интервалы неглинистых пород, и диаграммы микрозондов, нейтронного либо акустического методов, по которым среди неглинистых карбонатных пород находят пористые и проницаемые породы.

Значительно более сложным является выделение глинистых и особенно трещиноватых коллекторов. Наличие таких коллекторов в разрезе скважины устанавливают путем сопоставления и количественного анализа данных различных геофизических методов. В гамма-методе изучают естественную радиоактивность горных пород по данным измерений интенсивности естественного гамма-излучения вдоль ствола скважин [27]. Радиоактивность осадочных горных пород обусловлена присутствием в них радиоактивных элементов – урана, тория, актиния, продуктов их распада, а также изотопа калия К40 . Определение литологического состава пород по диаграммам гамма-метода основано на различии в естественной радиоактивности пород. Среди осадочных пород наиболее радиоактивными являются глины и калийные соли. Поэтому на диаграммах максимальные показания (отклонения кривой вправо) соответствует глинам и калийным слоям, минимальные (отклонения кривой влево) – пескам, песчаникам, карбонатным породам и гидрогеохимическим осадкам, не содержащим калийных солей. Глинистые пески, песчаники, известняки характеризуются промежуточными показаниями, величины которых тем больше, чем выше содержание глин в породе [27]. Результаты измерений нейтронными методами в основном определяются водородосодержанием пород. Чем больше последнее, тем меньшими показаниями отмечаются породы на диаграммах нейтронных методов.

Среди горных пород в наибольшем количестве водород находится в глинистых породах (глинах, аргиллитах, мергелях), содержащих значительное количество как поровой, так и химически связанной воды. Поэтому глинистые осадки отмечаются минимальными показаниями на диаграммах нейтронных методов [28].

Плотные породы (малопористые известняки и доломиты, ангидриты, плотные сцементированные песчаники), содержащие мало воды вследствие низкой пористости этих пород, отмечаются максимальными показаниями на диаграммах нейтронных методов.

Промежуточные показания наблюдаются против песков, песчаников, алевролитов, пористых разностей карбонатных пород [30].

Содержание водорода в нефти и воде примерно одинаково. Поэтому нефтеносные и водоносные пласты с одинаковым литологическим составом и пористостью не различаются по данным нейтронных методов.

Боковой метод является разновидностью метода сопротивлений. Он применяется при изучении карбонатных разрезов в скважинах с минерализованными буровыми растворами, т.к. в этих условиях на величину кажущегося сопротивления, измеренного обычным зондом, большое влияние оказывает скважина [35].

В данной дипломной работе интерпретация кривых ГИС и расчет подсчетных параметров пласта производится самостоятельно, на примере Дубровского месторождения елецкого горизонта скважины 7s2.

Основная методика обработки ГИС основана на применении петрофизических зависимостей – известных комплексных палеток для определения суммарного водородосодержания и глинистости, построенных в свое время тематическими партиями треста "Западнефтегеофизика" и ПО "Белоруснефть" по результатам 2144 определений полной пористости, выполненных на образцах керна для месторождений Припятского прогиба. Однако, учитывая такую разнородность информации, возникла необходимость в применении различных методик интерпретации ГИС для определения различных подсчётных параметров [37].

Глинистость не используется непосредственно для подсчета запасов нефти. Но без знания глинистости невозможно правильно рассчитать пористость и нефтенасыщенность коллекторов. Основным методом определения глинистости в продуктивных карбонатных породах Припятского прогиба является ГК. Многочисленными исследованиями показано существование достаточно тесной линейной зависимости показаний ГК от глинистости для пород Припятского прогиба[38].

Глинистость определялась по данным радиометрии (ГН, НГК) и акустического каротажа. В основу метода положено наличие корреляционных связей между суммарным водородосодержанием (W) карбонатных пород-коллекторов и показаниями геофизических методов.

Глинистость пород продуктивных отложений Дубровского месторождения определена по данным радиоактивного каротажа (НГК, ГК) с привлечением материалов акустического каротажа (Т). Снимаем значения Ij на диаграмме ГК. Затем, по палетке для определения объемной глинистости определяем Сгл. [40].

Коэффициент глинистости (Кгл) определяется по формуле:

Кгл.=Сгл.*0,42 (1),

где 0,42 – поправка за глинистость, вводимая с учетом принятого значения водородосодержания в глинистой фракции.

Сгл. - содержание глинистости.

Пористость пород продуктивных межсолевых отложений Дубровского месторождения определена по данным радиоактивного каротажа (НГК, ГК) с привлечением материалов акустического каротажа (Т).

На диаграмме НГК снимаем значения I(nj), затем, по палетке для определения коэффициента полной пористости для диаметра скважины Dc=0,14см, находим этот коэффициент[42].

Открытая пористость продуктивных пластов (Ко.п) по данным ГИС рассчитывается по формуле:

Ко.п=Кп.п-Кгл. (2)

Коэффициент нефтенасыщенности пород-коллекторов продуктивных отложений елецкого горизонта Дубровского месторождения определяется по коэффициентам увеличения сопротивления и балансу пористости. Рассчитывается относительное сопротивление (Р). С диаграммы БК снимаем показания сопротивления Sп (Ом*м). После этого высчитываются две поправки: поправка за диаметр скважины (для Dc=0,14, поправка=1,15) и поправка за пластовую воду Sв=0,03, где 0,03 – удельный вес пластовой воды по Припятской впадине.

Р=Sп*поправка за Dс/Sв (3)

Зная значения относительного сопротивления Р и коэффициента открытой пористости Ко.п., по графику оценки нефтенасыщенности, определяем коэффициент водонасыщенности пород (Кв).

Коэффициент нефтенасыщенности (Кн) определяется по формуле:

Кн = 1-Кв (4),

где 1- 100% - постоянная.

Кн измеряется в %. По организации УПГР считается, что ниже 50 % - вода; выше 50 % - нефть [10].


7. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ГЕОЛОГИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ

Исходя из вышеизложенного материала, по данным ГИС на примере скважины 7s2 Дубровского месторождения рассмотрим методику определения коэффициентов пористости, глинистости, водо- и нефтенасыщенности.

Для этого берем пласт мощностью 1,20 м., кровля 2963,8 м , подошва 2965,0 м. Сначала, напротив рассматриваемого пласта с диаграммы НГК I(nj) и акустического каротажа (T) снимаем показания. На диаграмме НГК среднее значение I(nj)=2,58 ст. ед., а на диаграмме АК ∆T=190 мксек/м [43].

Затем, по палетке для определения коэффициента полной пористости Кп.п для диаметра скважины Dc=0,14 м, находим этот коэффициент: Кп.п=14,2.

Теперь, снимаем значения Ij на диаграмме ГК. Ij=1,6 ст.ед. Затем, по палетке для определения объемной глинистости определяем содержание глинистости Сгл. и рассчитываем коэффициент глинистости (Кгл.) по формуле (1):

Кгл.=33,6*0,42=14,14

Далее по формуле (2) находим коэффициент открытой пористости пласта:

Ко.п=14,2-14,14=0,06

Теперь, с диаграммы БК снимаем показания Sп=70 Ом*м. После этого высчитываем 2 поправки: поправка за диаметр скважины (для Dc=0,14, поправка=1,15 ) и поправка за пластовую воду Sв=0,03.

Зная Sп можно высчитать относительное сопротивление Р, по формуле (3):

Р=70*1,15/0,03=2700.

Затем, зная значения относительного сопротивления Р и коэффициента открытой пористости Ко.п по графику оценки нефтенасыщенности определяем коэффициент водонасыщенности Кв. пород:

Кв.=43%.

После этого, подставляя коэффициент водонасыщенности в выражение (4) находим коэффициент нефтенасыщенности:

Кн.=100-43=57%.

Таким образом, из приведенных выше расчетов коэффициентов пористости, глинистости, водо- и нефтенасыщенности по данным ГИС, можно с уверенностью сказать, что исследуемый интервал относится к нефтенасыщенному пласту-коллектору, литологически сложенному из известняка [43].

По этой же методике рассчитаны остальные пласты-коллекторы Дубровского месторождения скважины 7s2 в интервале от 2928,2 м до 2973 м. В результате проведенной обработки данных выделено 8 пластов-коллекторов. Породы-коллекторы представлены известняками пористо-кавернозными до ситчатых, в разной степени трещиноватыми. Тип коллектора порово-каверново-трещинный [45].

Первые три пласта литологически сложены из известняка и являются нефтенасыщенными. Четвертый пласт также представлен известняком, но является слабонефтяным. Пятый и шестой пласт относятся к нефтенасыщенному коллектору, литологически сложенному из известняка. Седьмой пласт представлен известняком, но является слабонефтяным. Восьмой пласт сложен из известняка и является водонасыщенным.

Таким образом, по результатам проведенной работы, можно сделать вывод о том, что рассматриваемая скважина 7s2 Дубровского месторождения может являться эксплуатационной, а полученные подсчетные параметры могут использоваться для оценки запасов нефти [48].


8. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ ПРОМЫСЛОВО-ГЕОФИЗИЧЕСКИХ РАБОТ

8.1 Общие требования

1. Геофизические работы в скважинах выполняются специализированными геофизическими организациями, подразделениями (далее – подрядчик).

2. Геофизические работы должны проводиться в присутствии представителя геологоразведочной организации (далее – заказчик). К геофизическим работам могут привлекаться работники заказчика и его оборудование, если это необходимо для осуществления технологии исследования [49].

3. Общее руководство геофизическими работами при привлечении работников заказчика к производству геофизических работ возлагается на представителя геофизической организации (начальника отряда, партии).

4. Геофизические работы разрешается проводить после специальной подготовки территории и ствола скважины, обеспечивающей удобную и безопасную эксплуатацию наземного оборудования, беспрепятственный спуск (подъем) скважинных приборов и аппаратов на кабеле до интервала исследований или до забоя на весь период проведенных работ. Готовность территории и скважины для проведения геофизических работ подтверждается двусторонним актом, подписанным заказчиком и подрядчиком.

5. Площадка для размещения геофизического оборудования должна обеспечивать ширину прохода между оборудованием не менее 3 м, но быть не менее 10 x 10 м и возможность установки каротажного подъемника в горизонтальном положении с видимостью с места мостков и устья скважины; иметь твердое покрытие в заболоченных районах; иметь подъездные пути, обеспечивающие беспрепятственную эвакуацию в аварийных ситуациях своим ходом или буксировкой другими транспортными средствами; располагаться так, чтобы исключить скопление отработанных газов при работе двигателей внутреннего сгорания (далее – ДВС), подъемника; не располагаться в понижениях рельефа, в траншеях и тому подобном; освещаться в темное время суток в соответствии с требованиями раздела XI настоящих Правил [49].

6. Электрооборудование буровой установки перед проведением геофизических работ должно быть проверено на соответствие требованиям ТНПА и отвечать следующим дополнительным требованиям:

для подключения геофизического оборудования и аппаратуры к силовой или осветительной сети у края площадки, предназначенной для размещения оборудования, должна быть установлена электрическая точка-щит с отключающим устройством и унифицированной четырехполюсной розеткой на напряжение 380 В и двумя трехполюсными розетками на 220 В с заземляющими контактами;

должно быть обозначено место для подсоединения к контакту заземления буровой у края мостков отдельных заземляющих проводников геофизического оборудования; подсоединение их должно выполняться болтами или струбцинами, многожильными медными проводами [49].

7. Устье скважины должно обеспечивать удобство спуска и извлечения скважинных приборов. С этой целью при превышении фланца обсадной колонны относительно пола более 1,5 м на устье должна сооружаться рабочая площадка и к устью скважин, бурящихся с глинистым раствором, с помощью гибкого шланга подводиться техническая вода (горячая вода или пар при работе в условиях отрицательных температур).

8. Допуск к работе работников геофизических организаций должен осуществляться в соответствии с Правилами обучения.

9. Буровое оборудование скважины должно быть исправно для обеспечения возможности использования его во время проведения всех геофизических работ. В процессе их выполнения на скважине должна находиться вахта буровой бригады, которая по согласованию может привлекаться к выполнению вспомогательных работ [49].

10. При производстве геофизических работ проведение других работ буровой бригадой (ремонт бурового оборудования, включение буровой лебедки и различных силовых агрегатов, передвижение по полу буровой и приемным мосткам тяжелого оборудования, выполнение сварочных работ) может осуществляться только по согласованию с руководителем работ подрядчика. При этом работники буровой бригады должны быть проинструктированы о размерах опасных зон (взрывных, радиационно опасных работ, вблизи движущегося кабеля, токонесущих коммуникаций), нахождение в пределах которых не допускается. Ответственность за допуск людей в опасную зону несет руководитель работ подрядчика.

11. При работе буровых агрегатов по обеспечению проведения геофизических работ (дополнительная проработка ствола скважины, подъем оставленных в скважине приборов, кабеля с помощью бурильных труб) персонал геофизического отряда может находиться на буровой установке только с согласия руководителя буровых работ.

12. Перед проведением геофизических работ буровой инструмент и инвентарь должны быть размещены и закреплены так, чтобы не мешать работе геофизического отряда. Между каротажной лабораторией и подъемником и устьем скважины не должны находиться предметы, препятствующие движению кабеля и переходу работников. Площадка у устья и приемные мостки должны быть исправны, очищены от бурового раствора, нефти, смазочных материалов, снега, льда и тому подобного [49].

13. Переноска скважинных приборов массой более 30 кг допускается с помощью специальных приспособлений. Спуск таких приборов и приборов длиннее 2 м в скважину проводится механизированным способом.

8.2 Требования к оборудованию, аппаратуре и техническим средствам

1. Геофизические работы в скважинах должны проводиться с применением оборудования, кабеля и аппаратуры, технические характеристики которых соответствуют геолого-техническим условиям в бурящихся скважинах [49].

2. Каротажные подъемники должны быть укомплектованы:

подвесными и направляющими блоками, упорными башмаками и приспособлениями для рубки кабеля;

средствами визуального контроля за глубиной спуска-подъема кабеля, скоростью его продвижения и натяжения;

соединительными кабелями с прочным электроизоляционным покрытием;

автоматизированным кабелеукладчиком;

заземляющим многожильным медным проводом со струбциной для заземления к контуру буровой.

3. К геофизическим работам допускаются сертифицированное оборудование, кабель и аппаратура.

4. Опытные и экспериментальные образцы геофизической техники допускаются к применению только при наличии разрешения организации, в ведении которой находится скважина, и по согласованию с территориальным органом Проматомнадзора.

5. Конструкции приборных головок должны обеспечивать присоединение приборов к унифицированным кабельным наконечникам и сборку компоновок комплексной или комбинированной многопараметровой аппаратуры. Кабельный наконечник должен иметь конструкцию, обеспечивающую его захват ловильным инструментом. Ловильный инструмент под все виды применяемых головок и кабеля должен входить в комплект геофизической аппаратуры.

6. Прочность крепления приборов к кабелю с помощью кабельных наконечников должна быть ниже на 1/3 разрывного усилия соответствующего типа кабеля.

7. При геофизических работах должен применяться кабель, не имеющий повреждений броневого покрытия. Сохранность брони должна периодически проверяться, а после работ в агрессивной среде кабель должен испытываться на разрывное усилие [49].

8. Направляющий блок (оттяжной ролик) или наземный блок-баланс жестко (болтами, хомутами) крепится у устья скважины. Не допускается крепить их канатными укрутками, прижатием тяжелыми предметами.

9. Подвесной блок (ролик) должен подвешиваться к вертлюгу через штропы или непосредственно на крюк талевого блока через накидное кольцо. Не допускается использовать подвесные блоки без предохранительного кожуха (скобы).

8.3 геофизические исследования в скважинах

1. Кабель, соединяющий геофизическое оборудование с электросетью, должен подвешиваться на высоте не менее 2 м или прокладываться на козлах, подставках высотой не менее 0,5 м от земли в стороне от проходов, дорог и тропинок. Подключать геофизическое оборудование к источнику питания необходимо по окончании сборки и проверки электросхемы станции.

2. При производстве промыслово-геофизических работ на скважине подъемник и лаборатория должны устанавливаться так, чтобы обеспечивать хороший обзор устья, свободный проход работников на мостках буровой, сигнализационную связь между ними и устьем скважины.

3. Начальник геофизического отряда и геофизик каротажной станции обязаны оперативно информировать бурового мастера (бурильщика) и фиксировать в буровом журнале возможность возникновения осложнения или аварийной ситуации (затяжки скважинных приборов при подъеме кабеля или записи геофизических параметров, наличие желобов и уступов в открытом пробуренном стволе скважины, резкое повышение газопоказаний).

4. Перед началом геофизических работ должна быть проверена исправность тормозной системы каротажного подъемника, кабелеукладчика, защитных ограждений лебедки, целостность заземляющего провода и соединительных проводов [49].

5. Подвесной ролик должен быть надежно закреплен на талевой системе буровой установки и поднят над устьем скважины на высоту, обеспечивающую спуск кабеля с прибором в скважину по ее оси.

6. Спуск и подъем кабеля должны проводиться с контролем глубины, натяжения и со скоростями, рекомендуемыми для соответствующих типов аппаратуры и аппаратов.

7. Длина кабеля должна быть такой, чтобы при спуске скважинного прибора на максимальную глубину на барабане лебедки оставалось не менее половины последнего ряда витков


29-04-2015, 00:32


Страницы: 1 2 3 4 5
Разделы сайта