Головной гидроузел с каменно-земляной плотиной и водосбросным сооружением

со струйным течением; д - с искусственной шероховатостью; е - с полигональным (лабиринтным) водосливным порогом; ж, з - план и разрез мексиканского водосброса

Особенностью водослива берегового водосброса является отсутствие ниже его устройств для гашения энергии воды, поступающей в водоотводящий тракт, состоящий из промежуточного канала, сопрягающего сооружения (быстротока) или многоступенчатого перепада и устройства для гашения энергии потока.

Быстроток.

Быстроток представляет собой канал, уклон которого намного превышает критический. Обычно уклон задают в пределах 0,05-0,25, но он может быть больше, например, в скальных грунтах. Ширина быстротока бывает постоянной или переменной уменьшающейся или возрастающей книзу (рис.6).

Рис.6. Быстротоки: а - расширяющийся; б – сужающийся

Изменение ширины быстротока вызывается условиями гашения энергии в НБ и возможностью сокращения объема работ. Быстротоки выполняют в виде железобетонного лотка с прямоугольным, трапецеидальным или полигональным сечением Сужающиеся в плане быстротоки (рис.7, а ) позволяют уменьшить объем земляных работ по трассе, обеспечить плановое сопряжение развитых входных частей с быстротоками постоянной ширины и создать благоприятный гидравлический режим работы концевой части. Однако на длинных быстротоках возникает необходимость устройства в его конце расширяющегося участка (рис.7, а ) с рассеивающим носком-трамплином.


Рис.7. Средства борьбы с волнообразованием на быстротоках: а - сужение в плане быстротока; б, в, г - гасители в конце быстротока, соответственно, типа зигзаг, ребра и решетчатый трамплин; 1 - водовыпуск;.2 - плотина; 3 - водосброс; 4 - ребра нарастающей высоты; 5 - быстроток; 6 - растекатель; 7 - прорезная водобойная стенка

2.7 Гидравлический расчет открытого берегового водосброса-быстротока

Обусловлены наличием в его составе трех основных частей (головной, сбросной и концевой) и заключаются в следующем: определение параметров головного участка (очертания подводящего канала, число и ширина водосливных пролетов, отметка порога), обеспечивающих заданную пропускную способность;

Расчет водослива

Известно Q=6500 м3 /с; В=100 м; m=0,48

Определение напора на гребне без учета бокового сжатия:

Задаем ширину отверстий:

Ширина одного бычка:

Количество отверстий:

Число бычков:

n б= n отв - 1 =5 - 1 =4 бычка

Уточним окончательную ширину фронта:

Форма бычка: ξ=0,95 (ξ - коэффициент бокового сжатия плотины);

Эффективная ширина фронта водослива с учетом бокового сжатия в первом приближении:

принимаем 96 м

Уточняем напор на гребне:

Определение скорости воды на подходе:

Расчетный напор на гребне:

- коэффициент кинетической энергии

Определение удельного расхода

Определим глубину воды в сжатом сечении hсж

принимаем

Во втором приближении:

В третьем приближении:

Принимаю

Гидравлический расчет быстротока.

Гидравлический расчет быстротока заключается в определении сечения на быстротоке, где скорость в этом сечении будет равна допустимой скорости. Допустимая скорость определяется в зависимости от материала поверхности. Для быстротока с большой пропускной способностью, допустимую скорость принимают в пределах 25. .35 м/с.

В начале быстротока т.е. на месте перелома где I больше Iкр

Известно

Q =6500м3 /с; B нач =86 м;

требуется: определить h кр =

w = h кр . B=8 ,65.86=744.3 м3

x=2 h кр +B=2.8,65.86=103,3 м

=0.014, находим

Определяем h0 - нормальная глубина на быстротоке

Составляем таблицу для нахождения нормальной глубины, для этого задаемся значениями h. Затем строим график h = f (K), из которого определяем h0 .

hi B W=h. B X=2h+B R=W/X C=1/n. R1/6 K=W. C
1 86 86 88 0.97 71.06 6018
2 86 172 90 1.91 79.59 18912
3 86 258 92 2.80 84.40 36609
4 86 344 94 3.65 88.63 58248
5 86 430 96 4.47 91.67 83339
6 86 516 98 5.26 94.2 111480
7 86 602 100 6.02 96.33 142284
8 86 688 102 6.74 98.17 175346
9 86 774 104 7.44 99.8 210696

Кф =

Строим график для определения нормальной глубины .


Из графика (при Кф = 178543) h0 = 8,20 м.

Определим глубину воды в сжатом сечении в конца быстротока с учетом hкр

принимаем Р=15-разница между начальной и концевой частью быстротока.

-

где b ширина в конце быстротока

Во втором приближении:

В третьем приближении:


Принимаю 5,4 hсж

График для определения гидравлического показателя русла Х.

Х зависит от отношения , где h-заданная глубина канала,b-ширина канала.

Построение кривых свободной поверхности способом Бахметева

Где (i-уклон дна; l-длина заданного участка канала; h0 -глубина равномерного течения при заданном расходе Q (нормальная глубина); -относительные глубины и в конце и в начале данного участка.

Определим глубину воды в сжатом сечении в конца быстротока с учетом hкр принимаем Р=15-разница между начальной и концевой частью быстротока.

-

где b ширина в конце быстротока

Во втором приближении:

В третьем приближении:

Принимаю 5,4 hсж

Тогда hсж =h2

Таким образом находим требуемые параметры в конце быстротока при известным данным:

Q =6500м3 /с; B нач =67 м;

Требуется определить:

w = h 2 . B =5,4.67=361.8 м3

x =2 h 2 + B =2.5,4.67=77.8 м

, =0.014

Определяем Icp в начале и в конце быстротока

В начале

В конце

Далее

По Бахметеве уточняем h2

от сюда находим

=0,65

Уточняем

Принимаем

Определение дальность отлета струи

Дальность отлета струи L, отброшенной с трамплина, до встречи со свободной поверхностью нижнего бьефа определяется по формуле:

Здесь - угол наклона струи к горизонту в створе уступа ();

g- ускорение силы тяжести;

- превышение носка над уровнем нижнего бьефа ( = 24 м);

- коэффициент скорости находится по формуле

- превышение носка над уровнем нижнего бьефа ( = 30м);

Т - превышение уровня верхнего бьефа над уровнем воды нижнего бьефа (Т =46 м);

Н - напор на гребне водослива (Н = 11м).

Принимаем высоту носка (трамплина)

Далее определяем толщину струи в створе уступа

Следовательно дальность отлета струи будет равна


Скорость струи на уровне свободной поверхности нижнего бьефа находится без учета изменения ее формы при движении в воздушной среде.

Где ,

Далее определяем угол встречи струи со свободной поверхностью (угол входа):

Струя, войдя под уровень нижнего бьефа, движется по прямой при этом принимается, что ось струи касательная к точке встречи оси струи со свободной поверхность.

Приращение дальности падения струи с учетом движения под уровнем нижнего бьефа по прямой до дна размыва равно


Где hр - глубина в яме размыва.

Яму размыва, образующуюся в месте падения струи, можно определить по эмпирической формуле И.Е. Мирцхулавы

К - коэффициент перехода от средних скоростей к актуальным (К = 1,5-2), W- гидравлическая крупность грунта, определяемая по формуле

м

Где d- расчетный диаметр частиц грунта, отвечающих фракциям, мельче которых в грунте содержится 90% частиц; - удельные веса материала и воды с учетом

Вывод: меньше размыва нет

Глава 3. Плотина из укатанного бетона (УБ-2) (вариант Б)

3.1 Основные характеристики "укатанный бетон" (УБ)

За последние 20 лет во многих странах мира установилась тенденция широкого строительства плотин из укатанного бетона (rollercompactedconcrete) или сокращенно УБ (RCC). УБ представляет собой особо жесткую бетонную смесь с пониженным содержанием цемента и повышенным содержанием пуццоланы (золы-уноса), уплотняемую вибрационными катками. Под понятием УБ подразумевается определение его как нового особо жесткого бетона с широкими физико-механическими свойствами, зависящими не только от его состава, но и от технологии его укладки и виброукатки в плотине. В этом отношении УБ приближается к виброукатаному гравелистому грунту, упрочненному цементом. УБ отличается от традиционного бетона главным образом своей консистенцией. Для эффективного уплотнения УБ должен быть достаточно сухим, чтобы выдержать вес виброкатков, и в то же время достаточно влажным, чтобы обеспечить полное распределение цементного раствора в смеси в процессе перемешивания и виброукатки. УБ значительно отличается и по внешнему виду от обычного бетона, скорее напоминая гравийную насыпь, так как присутствие в нем цементного раствора почти незаметно. Для достижения максимального уплотнения требуется намного большее вибрационное усилие, чем для обычного бетона.

3.1.1 Физико-механические характеристики укатанного и обычного бетонов

Физико-механические характеристики УБ всех типов зависят от содержания его компонентов, величины которых изменяются в широких пределах, как видно из табл.1.1, полученной по данным смесей УБ в 150 плотинах на 1997 г.


Содержания компонентов смесей УБ в 150 плотинах (1997 г)

Содержание компонентов УБ-1 УБ-2 УБ-3 УБ-4

Цемент, кг/м3 :

Среднее

Максимальное

Минимальное

63

95

0

63

125

0

83

154

46

88

96

42

Пуццоланы, кг/м3 :

Среднее

Максимальное

Минимальное

13

90

0

57

130

0

111

225

40

35

78

24

Вода, л/м3 :

Среднее

Максимальное

Минимальное

121

168

87

115

145

95

101

136

73

95

110

75

Пуццоланы/вяжущие: 0,17 0,48 0,57 0,28
Водоцементное отношение: 1,59 0,96 0,52 0,77

Анализ физико-механических характеристик УБ выполнен по данным испытаний образцов УБ ряда построенных плотин из УБ, приготовленных из одинаковых компонентов, что исключает влияние различных местных материалов и условий. Это сравнение позволит на стадии проектирования плотин более обоснованно принимать физико-механические характеристики УБ до проведения полевых испытаний УБ.

Время перекрытия швов УБ и их обработка

Тип УБ Свежий шов Полухолодный шов Холодный шов

УБ-1:

Пределы перекрытия, град. /час

Обработка шва

Укладка слоя цементного раствора

<100 град. /час

Очистка пылесосом

Нет

100-250 град. /час

Очистка пылесосом

Около напорной грани

>250 град. /час

Промывка водой

По всей поверхности

УБ-2:

Пределы перекрытия, град. /час

Обработка шва

Укладка слоя цементного раствора

<200 град. /час

Очистка пылесосом

Нет

200-500 град. /час

Промывка водой

Около напорной грани

>500 град. /час

Срезка всей поверхности

По всей поверхности

УБ-3:

Пределы перекрытия, град. /час

Обработка шва

Укладка слоя цементного раствора

<300 град. /час

Очистка пылесосом

Нет

300-800 град. /час

Промывка водой

Нет

>800 град. /час

Срезка всей поверхности

По всей поверхности

УБ-4:

Пределы перекрытия, град. /час

Обработка шва

Укладка слоя цементного раствора

Не иcпользуют

Нет

Нет

Не иcпользуют

Нет

Нет

Швы обрабатывают как холодные

Срезка всей поверхности

По всей поверхности

На основе анализа натурных данных поведения швов УБ в Бюллетене N 125 (2003) Международной комиссии по большим плотинам даны пределы времени перекрытия швов (град. С/час) и рекомендации по их обработке, включая укладку подстилающего слоя цементного раствора (табл.1.2).

3.1.2 Основные факторы, влияющие на прочность на сдвиг в швах УБ

Влияние возраста УБ на сцепление и трение в швах

На рис.1.1 показано влияние возраста УБ (в сутках) на сцепление С (МПа) и угол внутреннего трения φ в швах УБ при низком и высоком расходе вяжущих (УБ-1 и 2), среднем содержании пуццоланов в вяжущих 25% и времени перекрытия швов от 80 до 500 град. /час (без применения замедлителей схватывания). Влияние времени перекрытия швов на их сцепление и трение

На рис.1.2 показано влияние времени перекрытия швов УБ на сцепление и трение в них при низком и высоком расходе вяжущих (УБ-1 и 2,3), среднем содержании пуццоланов в вяжущих, равном 25%, и без применения замедлителей схватывания, увеличивающих время перекрытия швов.

C (МПа) j (град)

Рис.1.1 Зависимость сцепления С и трения j в швах УБ от времени Т (дни) при высоком и низком расходе вяжущих (Ц + З): 1 - зависимость j при высоком (Ц + З); 2 - то же при низком (Ц + З); 3 - зависимость С при высоком (Ц + З); 4 - то же при низком (Ц + З)

C (МПа) j (град)

Рис.1.2 Влияние времени перекрытия швов УБ (град. С/час) на сцепление С, МПа (сплошные линии) и угол внутреннего трения, j град. (пунктир) в швах при низком и высоком расходе вяжущих

Анализ обширных опытных данных и зависимостей рис.1.2 позволил сделать следующие важные выводы:

1. Угол внутреннего трения в шве УБ практически не зависит от расхода вяжущих, в том числе пуццоланов, времени перекрытия швов и возраста УБ, а зависит в основном от типа заполнителя (прочности частиц породы и их формы).

2. Сцепление в шве УБ практически прямо пропорционально расходу вяжущих при данном типе заполнителей.

3. Сцепление в шве УБ возрастает во времени подобно росту прочности самого УБ на сжатие.

4. Сцепление и в меньшей степени трение в шве начинают снижаться с началом гидратации вяжущих (без замедлителей схватывания) на поверхности шва и спустя 80 град. /час (или 4 часа при температуре УБ 20о ) сцепление в шве при высоком и низком расходе вяжущих снизится примерно вдвое, если этот шов не будет перекрыт свежим слоем УБ.

5. В слое УБ, перекрытом через 80 град-час свежим слоем УБ, снижение сцепление в шве происходит медленно вплоть до 600 град. /час.

6. Предельное время перекрытия шва, равное 80 град. /час, может быть увеличено до 200 град. /час за счет применения замедлителей схватывания или высокого содержания золы-уноса, т.е. перехода на УБ 3-го типа.

Условия подготовки поверхности швов УБ могут быть следующими: естественное просушивание свежей или мокрой поверхности (SSD), продувка воздухом, очистка щетками, поврежденная поверхность, нетронутая поверхность и обработка подстилающим слоем цементного раствора (beddingmix) толщиной 1-2 см.

Трение в шве УБ практически не зависит ни от каких факторов, кроме типа заполнителя, согласно опытным данным по УБ плотины Миель-1.

Согласно этим же данным сцепление в шве прямо пропорционально расходу вяжущих (после его порогового значения в 30-40 кг/м3 ) и оно повышается с сокращением времени перекрытия шва и, особенно, при применении замедлителя схватывания. Применение подстилающего слоя цементного раствора даже при больших сроках перекрытия шва (до 1200 град. /час) позволяет достичь максимального сцепления в нем близкого к сцеплению УБ между швами.

В проектах плотин из УБ используют уменьшенное на коэффициент запаса пиковое значение прочности УБ на сдвиг, при котором сцепление в швах УБ исчерпывается, и возникают микроподвижки по шву. Обычно при проектировании плотин используют пиковые значения прочности УБ на сдвиг и угла внутреннего трения, и сопротивление плотины на сдвиг должно превышать сдвигающую нагрузку с расчетным коэффициентом запаса. Поэтому целесообразно определять остаточное или кажущее сцепление и трение в шве, которые остаются после возникновения скольжения по шву. Тогда эти значения могут быть использованы в расчетах устойчивости плотины на сдвиг и если ее коэффициент запаса на сдвиг больше 1,0, то плотина считается устойчивой, что соответствует реальному предельному состоянию.

Расчетные напряжения в плотине из УБ не должны превышать предельные значения, соответствующие началу раскрытия швов, а устойчивость плотины на сдвиг должна быть обеспечена даже при отсутствии сцепления в швах, т.е. при "холодных" швах.

При проектировании плотин из УБ разного типа можно использовать средние параметры прочности, деформируемости и водопроницаемости УБ и параметры прочности на сдвиг швов УБ, данные в Бюллетене Международной комиссии по большим плотинам (табл.1.3).

Параметры прочности, деформируемости и водопроницаемости УБ.

Табл. 1.3

Параметры УБ-1 УБ-2 УБ-3 УБ-4

Прочность на сжатие УБ (МПа), диапазон:

среднее значение:

5 - 15

11,6

10 - 25

15,2

15 - 30

20,7

12 - 25

17,3

Прочность на растяжение шва, МПа, диапазон:

среднее значение:

0 - 0,7

0,35

0,3 - 1,0

0,7

0,8 - 1,8

1,35

0,8 - 1,8

1,3

Сцепление в шве, МПа, диапазон:

среднее значение:

0 - 1,5

0,7

0,5 - 1,8

0,9

1,0 - 4,0

1,9

1,5 - 4,0

2,4

Модуль упругости УБ, (103 х МПа) 10 - 20 15 -25 20 - 25 20 - 25
Водопроницаемость, м/с 10-4 - 10-5 10-5 - 10-8 10-7 -10-12 10-8 - 10-9

Как показывают испытания блоков УБ других плотин с различным расходом вяжущих, состоянием и обработкой швов, сроком их перекрытия, боковой нагрузкой и возрастом блоков, при сдвиге швов остаточное сцепление в них падает до малых значений (до 10% от пиковых), но остаточное трение в них остается на уровне 90% пиковых значений

3.1.3 Современное состояние строительства плотин из укатанного бетона в мире

Метод строительства


29-04-2015, 00:35


Страницы: 1 2 3 4 5 6
Разделы сайта