Когда за колонной цемента нет или он имеется, но по всему периметру не сцеплен с колонной, приемник отмечает продольную волну по колонне. Она имеет максимальную амплитуду вследствие малого затухания и время пробега, соответствующее скорости распространения упругих воли в стали (V = 5400 м/сек). Против муфтовых соединений колонны наблюдается уменьшение амплитуды колебаний в связи с рассеянием энергии на резьбовых соединениях и увеличение времени пробега ("звенящая" колонна). Если цементное кольцо сцеплено только с колонной, то упругая волна по колонне будет резко ослаблена вследствие демпфирующего влияния цементного кольца и амплитуда Ак будет на уровне помех. В этом случае к приемнику с заметной амплитудой придет волна по цементному кольцу, в котором скорость распространения упругих колебаний невелика (Vц = 2500 м/сек). Поэтому будет регистрироваться максимальное время Тп. Если цементное кольцо одновременно сцеплено с колонной и породой, то первой к приемнику будет подходить головная волна по породе, так как Vп>Vц. В этом случае Ап<Ак.мак, Тп≠ Тк икривые Ап и Тп сходны с аналогичными кривыми, полученными в необсаженной колонне и соответствуют кривым других геофизических методов. Измерение аппаратурой АКЦ проводится через 1-2 суток после заливки цементного раствора. Масштаб регистрации Ак выбирается так, чтобы в зацементированной части скважины регистрируемый сигнал был близок к порогу чувствительности аппаратуры.
Билет 15
43. Метод самопроизвольной поляризации (ПС), физические основы, кривые, решаемые задачи
В скважине, заполненной глинистым раствором или водой, и вокруг нее самопроизвольно возникают электрические поля, названные самопроизвольной или собственной поляризацией. Этот метод основан на собственном эл. поле среды, то есть здесь мы его не создаём, оно естественное. ПС возникает за счёт диффузионно-адсорбционных (возникают на границе песчаных и глинистых пластов за счёт разных адсорбционных св-в), фильтрационных (возникают за счёт движения жидкости через глинистую корку с возникновением ЭДС) и окислительно-восстановительных (обусловлены хим. и эл-хими. реакциями, проходящими на контакте пород с разными св-ми) процессов.
Использование кривой ПС. Метод самопроизвольной поляризации ПС является одним из важнейших в комплексе промыслово-геофизических исследований скважин. Он широко применяется для установления границ пластов и их корреляции, расчленения разреза на глинистые и неглинистые пласты, способствуя этим выделению коллекторов. В ряде случаев данные кривой ПС используются при оценке сопротивлений (минерализации) пластовых вод, глинистости, пористости, нефтенасыщенности пород.
На форму и амплитуду кривой ПС влияют мощность пласта, диаметр скважины, сопротивления пласта, вмещающих пород, промывочной жидкости и пластовой воды, проникновение фильтрата глинистого раствора в пласт и др.
Песчано-глинистый разрез наиболее благоприятен для изучения его по кривой ПС. Пески, песчаники, алевриты и алевролиты легко отличаются по кривой ПС от глин.
44. Использование термометрии при решении задач по контролю за разработкой
Термометрические методы исследования разрезов скважин основаны на изучении распространения в скважинах и окружающих их горных породах естественных (геотермия) и искусственных тепловых полей. Интенсивность и распространение тепловых полей зависят от термических свойств, геометрических форм и размеров исследуемых сред. Термические свойства горных пород характеризуются теплопроводностью или удельным тепловым сопротивлением, тепловой анизотропией, удельной теплоемкостью и температуропроводностью. Тепловые поля в нефтеносных и газоносных горизонтах образуются при вскрытии и разработке пластов. Распределение естественного теплового поля в толще земной коры зависит от литологического, тектонического и гидрогеологического факторов, на изучении которых основано решение следующих задач:
-Литолого-тектонические и гидрогеологические задачи региональной геологии
-Детальное исследование разреза скважин
В геофизике используется метод искусственного теплового поля, он основан на различии тепловых св-в изучаемых сред. ИТП создают при помощи нагретой промывочной жидкости. Метод искусственного теплового поля позволяет решать следующие задачи: 1) определение термодинамических и газогидродинамических характеристик эксплуатируемых объектов 2) изучение технического состояния скважин.
Термограмма представляет кривую изменения естественных температур по разрезу скважины. Наклон кривой к оси глубин определяется величиной геотермического градиента. Среди осадочных пород наибольшее значение геотермического градиента соответствует глинам и аргиллитам, меньшее - неглинистым песчаникам и карбонатным породам. По термограмме можно выделить газоносные пласты. Они отмечаются интервалами пониженных температур, возникающих при охлаждении газа вследствие его расширения в момент поступления в скважину.
Термометрия исп-ся для определения высоты подъема цемента (не даёт оценки качеству затвердевания). Это основано на экзотермической реакции затвердевания цемента (выделяется теплота, и термометр эту теплоту улавливает).
45. Геофизические исследования, проводимые при проведении ПВР
Прострелочные работы:
1. перфорация обсадных колонн для вскрытия пластов
2. срезание в скважинах колонн и труб для их извлечения
3. отбор образцов ГП в скважинах
4. отбор проб жидкости и газа
Взрывные работы:
1. повышение продуктивности скважины
2. разобщение пластов
3. очистка фильтров
4. освобождение и извлечение труб из скважины при авариях
5. борьба с поглощениями ПЖ при бурении
6. ликвидация и тушение пожаров
Перфорацией называется процесс образования отверстий в обсадных трубах, цементном камне и пласте с помощью специальных скважинных стреляющих аппаратов — перфораторов. По типу пробивного элемента перфораторы подразделяются на беспулевые (кумулятивные) и пулевые. В практике прострелочных работ кумулятивная перфорация получила наибольшее распространение, так как она обеспечивает высококачественное вскрытие пластов в самых различных геологических и скважинных условиях. Основными элементами любого кумулятивного перфоратора являются взрывной патрон и электропроводка.
Отбор образцов со стенок скважины осуществляется при помощи стреляющих и сверлящих грунтоносов. Первый состоит из стального корпуса с пороховыми каморами, над которыми располагаются стволы. В пороховые каморы помещаются пороховые заряды с электровоспламенителями. В стволы вставляются полые цилиндрические бойки из прочной стали, крепящиеся к корпусу стальными тросиками. После установки грунтоноса в нужном интервале на электровоспламенитель подается ток. Пороховой заряд взрывается, и под действием давления пороховых газов боек с пяткой вылетает из ствола грунтоноса и внедряется в стенку скважины. При подъеме грунтоноса стальной тросик извлекает боек из стенки скважины вместе с образцом. Стреляющие боковые грунтоносы предназначены для отбора образцов сравнительно мягких пород (песков, рыхлых песчаников, мучнистых известняков и доломитов, глин) и характеризуются невысокой эффективностью (примерно 50—60 % бойков выносят образцы породы, остальные извлекаются пустыми).
Сверлящий грунтонос позволяет за один спуск отобрать от 5 до 15 образцов породы диаметром 20 мм и длиной до 50 мм. Затруднения в отборе образцов возникают при наличии на стенке скважины толстой глинистой корки, а также каверн. Наилучший эффект применения сверлящих грунтоносов получают в плотных породах после промывки и проработки скважины.
Билет 16
46. Разновидности электрического каротажа, решаемые задачи
Электрический каротаж (ЭК) – исследования горных пород, основанный на измерении параметров естественного или искусственного постоянного (квазипостоянного) электрического поля.
1. Метод потенциала самопроизвольной поляризации (ПС). Электрический каротаж, основанный на регистрации параметров естественного электрического поля, регистрирует потенциал электрического поля (ПС). Применяется для изучения естественного поля, как в открытом стволе, так и в обсаженной колонной скважине. Поскольку измерительный канал ПС в скважинном приборе представляет собой обычный вольтметр, то его метрологический контроль выполняется с помощью серийно выпускаемых средств измерения напряжения электрического тока. Изучение естественных электрических полей, возникающих в результате физико-химических процессов диффузии солей в растворах электролитов, фильтрации жидкости, окислительно-восстановительных реакций. Эти процессы порождают потенциалы диффузионные (главная роль в формировании полей), течения, окислительно-восстановительные.
2. Каротаж сопротивлений. Электрический каротаж сопротивлений основан на регистрации параметров постоянного (квазипостоянного) искусственного электрического поля. К геофизическим методам этого типа относятся следующие методы: - (БКЗ) - (БК) или метод сопротивления экранированного заземления (БК): сверхуснизу экранируют и ток течёт по ρП , куда до этого бы не потёк из-за ρП > ρВМ . Модификация – микроэкранированное заземление - Боковой микрокаротаж (БМК) - Микрокаротажное зондирование (МКЗ) - Каротаж вызванных потенциалов (ВП) - Токовая резистивиметрия (Рез). Измеряемой величиной во всех этих методах является удельное электрическое со-противление (УЭС) изучаемой среды. Единица измерения Ом-метр (омм).Метод кажущегося сопротивления (КС): ρК = K·ΔUMN / I. AB – ток, MN – приём. Зонд длиной 0,4÷8 м. Модификация – метод микрозондов, метод резистивиметрии (определяют ρ раствора, чтобы потом учесть его влияние). Электромагнитные методы: на высокой частоте. Индукционный метод – до 60кГц. Метод волновой проводимости (ВМП) – до 30МГц. Диэлектрические методы. Измеряют ε (во сколько раз напряжённость ЭП в данном диэлектрике меньше напряжённости поля в вакууме).
47. Характеристика объекта исследования в скважине необсаженной колонной
ВНК : В необсаженных скв-х опр-ся: 1.по показателям КС обыч-х зондов большого размера в случае однородных высокопрониц-х пластов наб-ся четкая граница м/д водой и Н.(против Н-увел-е сопр-е, против воды – умен-е сопрот-е). Если проникновение р-ра глубокое, то возн-т затруднение. Против воды кривые совп-т, против Г-кривая умен-я (ее знач-я). По привышению показаний НГК (или ННК(Т)) большого зонда, по-срав-ю с малым зондом (мет-ка 2х –зондового НГК).ГВК: В не обсажен-й ска-не: так же как и у ВНК. 1. По мах показ-м КС зондов большого размера Методика временных замеров (метод НГК). В обсаженной скважине: 1.Сква-на обсажена, зона прон-я расформ-ся. 2.по увел-ю показ-й нейтр-го g-метода (НГК) или ННК. против Г –увел-е зн-е интен-ти, против воды - умен-е зн-е интенс-ти.ГНК: В обсаж-й или не обсаж-й сква-не: 1.По наличию «+» приращений показаний на кривых НГК или ННК(Т) по мет-ке врем-х замеров. против нефтеносной части пласта показ-я Ingили Innна разных кривых будут практически совпадать.
48. Вторичное вскрытие пластов-коллекторов, гидродинамическое совершенство скважин
Способы вскрытия пласта: а - открытый забой; б - забой, перекрытый хвостовиком колонны, перфорированным перед ее спуском; в - забой с фильтром; г - перфорированный забой. При открытом забое башмак обсадной колонны цементируется перед кровлей пласта. Затем пласт вскрывается долотом меньшего диаметра, причем ствол скважины против продуктивного пласта оставляется открытым.
Скважины с перфорированным забоем нашли самое широкое распространение (более 90% фонда). В этом случае пробуривается ствол скважины до проектной отметки. Перед спуском обсадной колонны ствол скважины и особенно его нижняя часть, проходящая через продуктивные пласты, исследуется геофизическими средствами. Результаты таких исследований позволяют четко установить нефте-, водо- и газонасыщенные интервалы и наметить объекты эксплуатации. После этого в скважину опускается обсадная колонна, которая цементируется от забоя до нужной отметки, а затем перфорируется в намеченных интервалах.
Пескоструйная перфораця . При гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок специального аппарата - пескоструйного перфоратора, прикрепленного к нижнему концу насосно-компрессорных труб. Песчано-жидкостная смесь закачивается в НКТ насосными агрегатами высокого давления. В породе вымывается каверна грушеобразной формы, обращенной узким конусом к перфорационному отверстию в колонне. Размеры каверны зависят от прочности горных пород, продолжительности воздействия и мощности песчано-жидкостной струи. Медленно вращая пескоструйный аппарат или вертикально его перемещая, можно получить горизонтальные или вертикальные надрезы и каналы. В этом случае сопротивление обратному потоку жидкости уменьшается и каналы получаются примерно в 2,5 раза глубже. При пескоструйной перфорации НКТ испытывают большие напряжения.
Куммулятивная перфорация. Проведение вторичного вскрытия пласта кумулятивной перфорацией возможно при различных гидродинамических условий в скважине. Проведению процесса вторичного вскрытия происходит при депрессии, что исключает попадание в ПЗП жидкости вскрытия и механических примесей. В данном случае перфоратор спускается в скважину на трубах и устанавливается напротив интервала пласта. Перспективность применения ПНКТ с экон-кой точки зрения: - снижение прод-ти ремонта скважины в результате комбинирования технологических процессов вторичного вскрытия и спуска исп-ой компоновки; -окупаемость сверхзатрат на сервисные услуги по проведению перфорации за счет сокращения прод-ти ремонта скважины.
Билет 17
49. Методы определения коллекторских свойств и характеры насыщения в карбонатных отложениях
Породы коллекторы нефти и газа способны вмещать нефть и газ и отдавать их при разработке. Коллекторы характеризуются емкостными (пористость) и фильтрационными (проницаемость) свойствами, морфологией порового пространства. Геофизические способы выделения коллекторов основываются на следующем. В коллекторе происходит фильтрация бурового раствора, которая характеризуется различными признаками на диаграммах отдельных методов и обуславливает изменение показаний во времени на геофизических диаграммах, регистрируемых повторно. Коллекторы отличаются от вмещающих пород пористостью, глинистостью и геофизическими параметрами, тесно связанными с пористостью и глинистостью. Используя критические значения кп , кгл и соответствующие геофизические параметры, можно отделить коллекторы от неколлекторов, сравнивая значения параметров в изучаемом пласте с критическими. Гранулярные коллекторы . Признаки выделения гранулярных коллекторов условно разделяют на две группы: прямые признаки, фиксирующие проникновение в пласты фильтрата промывочной жидкости, и косвенные, характеризующие отличие проницаемых пород-коллекторов от непроницаемых вмещающих пород по значениям кп , кгл и ряда геофизических параметров.К прямым признакамотносятся: изменение электрическогосопротивления в радиальном направлении, фиксируемое зондами с различной глубинностью исследования (комплекс зондов БКЗ, БК-МБК, БК-ИК), отрицательные аномалии ПС, уменьшение dc вследствие образования глинистой корки, положительные приращения (превышение показаний потенциал-микрозонда над показаниями градиент-микрозонда) па диаграммах микрозондов. Косвенные признаки выделения гранулярных коллекторов основаны на том, что значения ряда геофизических параметров (∆U,∆Iγ , ∆Inγ ,∆t и др.) превышают некоторые граничные значения, характерные для перехода от непроницаемых пород к породам-коллекторам. Эти граничные значения соответствуют минимальным величинам пористости и проницаемости пород, при которых в последних происходит продвижение флюидов (воды, нефти, газа). Коллекторы сложного строения . К ним относят карбонатные породы с пористостью смешанного типа, для которых отсутствуют прямые признаки коллекторов. В случае отсутствия прямых признаков существенную роль играют значения пористости, определяемые по каротажу. При выделении коллекторов сложного строения применяют методику повторных исследований, считая признаком коллектора изменение показаний на диаграммах, зарегистрированных одной и той же аппаратурой, но в разное время. Повторные замеры выполняются в период, когда в исследуемых пластах происходит формирование или расформирование зоны проникновения. Совмещая диаграммы первого и второго замеров, регистрируемые в одинаковом масштабе, выделяют коллекторы в интервалах изменившихся показаний. Эффективность повторных исследований существенно повышается при сочетании его с другими факторами: изменением гидростатического давления в скважине; изменением физических свойств бурового раствора. В первом случае производится либо продавка бурового раствора в пласты, либо испытание скважины пластоиспытателем на бурильных трубах. Это приводит к заметному увеличению зоны проникновения в коллекторах; либо се сокращению или полному исчезновению. Физические свойства бурового раствора изменяют, добавляя в него различные активаторы. Добавлением соли снижают его удельное сопротивление, добавлением радиоактивного изотопа повышают удельную радиоактивность и т.д. К глинистым коллекторам относят песчаники и алевролиты, содержащие значительное количество глинистого материала, рассеянного в порах породы (дисперсная глинистость) или расположенного в виде отдельных гранул (структурная) и прослоев (слоистая глинистость).
50. ИК. Достоинства и недостатки
Индукционный каротаж (ИК) предназначен для изучения удельной электропроводности горных пород, пересеченных скважиной. Он основан на измерении напряженности переменного магнитного поля вихревых токов, возбужденных в породах полем опущенного в скважину источника. Индукционный метод принципиально отличается от других методов электрического каротажа тем, что не требует непосредственного контакт зондовой установки с окружающей средой. Поэтому индукционный каротаж позволяет изучать разрезы скважин,заполненных нефтью или жидкостью, плохо проводящей электрический ток. Простейший зонд ИК состоит из двух катушек - генераторной (ГК) и приемной (ПК) расположенных на общей оси, совпадающей с осью скважины. Расстояние между катушками L называется длиной зонда. Многокатушечный зонд представляет собой систему катушек, укрепленных на одном изоляционном стержне. Генераторная Г и приемная П катушки являются главными, остальные катушки называются компенсационными К и фокусирующими Ф. Компенсационные катушки служат для исключения в приемной катушке ЭДС прямого поля, индуцируемого генераторной катушкой. В зависимости от того, расположены ли фокусирующие катушки внутри или вне главного зонда, фокусировка считается внутренней или внешней. Основной задачей внешней фокусировки является снижение влияния вмещающих пород на показания зонда, а задачей внутренней фокусировки - снижение влияния скважины и зоны проникновения. Основной задачей, решаемой при обработке данных ИК, является определение удельного сопротивления пластов.
51. Проведение ГИС в скважинах
Промыслово-геофизическое предприятие (контора, экспедиция, отдельно действующая партия) действуют на основании плана и сметы на геофизические работы в скважинах. Установлен следующий порядок проведения геофизических работ. Перед выездом на скважину начальник партии получает наряд, в котором указывается общий объем работ, в том числе по видам исследований и интервалам, данные о времени проведения работ, о конструкции скважин и т.д. Затем он информирует своих подчиненных о характере предстоящих работ, проверяет готовность аппаратуры и оборудования, если необходимо, получает взрывчатые вещества, средства взрывания. Материалы геофизических исследований после окончания работ на буровой сдаются в интерпретационную партию, а наряд на работу и акт о выполнении - диспетчерской службе.
В технологию проведения промыслово-геофизических исследований скважин входят подготовительные работы на базе и буровой, спуск-подъем приборов и кабеля, регистрация диаграмм, их предварительная обработка и оформление перед передачей в бюро обработки и интерпретации. Подготовительные работы на базе включают: получение наряда на проведение геофизических исследований, проверку работоспособности наземной и глубинной аппаратуры, профилактический осмотр и проверку подъемника и лаборатории. Работы на буровой начинаются в том случае, если к приезду каротажной партии или отряда буровая подготовлена к работе в соответствии с Техническими условиями на подготовку скважин для проведения геофизических работ. Геофизические измерения в скважине проводятся согласно требованиям Технической инструкции по проведению геофизических исследований в скважинах. По прибытии на буровую проводятся следующие подготовительные работы: 1) устанавливают подъемник на 25-40 м от устья скважины; 2) на расстоянии 5—10 м от подъемника устанавливают лабораторию; 3) устанавливают и закрепляют направляющий
29-04-2015, 00:37