Место и роль Мирового океана в формировании экосистемы планеты

наиболее характерно для озер как для одного из звеньев круговорота воды? Во-первых, испарение, которое с поверхности озер больше, чем с суши, их окружающей. Происходит это потому, что бывают периоды, когда почва на поверхности суха, и влага, расходуемая на испарение, отсутствует. Вода же в озерах всегда есть, и испарение с них не прекращается. Атмосфера получает ежегодно примерно 500-600 км3 дополнительной воды за счет испарения с озер, но в сравнении с общим количеством воды, расходуемой на испарение, эта добавка весьма незначительна.

Главная роль проточных озер в круговороте воды - регулирование речного стока, его выравнивание во времени. Примерами могут служить р. Нева, сток которой хорошо зарегулирован целой системой озер, в том числе крупнейшими в Европе - Ладожским и Онежским. Однако водорегулирующее значение еще в большей степени имеют искусственные озера - водохранилища.

Важная особенность озер и водохранилищ состоит в том, что они представляют собой более или менее замкнутые экологические системы, в которых протекает сложный комплекс взаимосвязанных процессов: механического характера (течение, волнение, движение наносов), физического (термические, ледовые явления), химического и биологического. В водоемах высокой степени проточности эти процессы приближаются к условиям рек. Но большие озера с относительно слабой проточностью (например, такие, как Байкал, Ньяса, Танганьика, Виктория, Верхнее, Мичиган), имеющие больший объем водной массы по сравнению с ее притоком, отличаются своеобразием экосистем.

Биологическое звено.

Общеизвестно, что в жизни животных и растений вода имеет огромное значение. Они в большей своей части состоят из воды. Много воды требуется людям для питья (2,5-3 л ). Если принять эту норму, то на удовлетворение физиологической потребности одного человека расходуется около 1м3 воды в год, а на всех людей - 3,3 км3 . В сумме все живые организмы суши расходуют для питья не более 50 км3 в год. Эта величина очень невелика в сравнении с любым элементом водного баланса Земли. Нужно еще учесть, что почти вся вода, потребляемая людьми и животными, в конце концов испаряется и возвращается в общий круговорот воды. Независимо от объема потребляемой воды физиологическое значение этой статьи расходования водных ресурсов в жизни людей и животных исключительно велико. К биологическому звену круговорота воды относятся и водные животные и растения, для которых моря, озера, реки - среда существования.

Важнейший биологический процесс, обеспечивающий существование на Земле всего органического мира, - фотосинтез происходит при участии воды. В результате этого процесса растения из углекислоты и воды синтезируют крахмал, белки, жиры, которые в свою очередь служат пищей для людей и животных. В процессе фотосинтеза входящий в состав воды водород вместе с углеродом, поглощаемым из воздуха, образуют питательные вещества, а растения отдают в воздух кислород. Обогащение кислородом атмосферы происходит не только за счет растительности суши, но и за счет океанического фитопланктона.

Хозяйственное звено.

Использование водных ресурсов, их преобразования, направленные на улучшение их как одного из компонентов среды, окружающей людей, также происходят в процессе круговорота воды.

Иногда, а в последнее время все чаще высказывается мнение о том, что вода, используемая для хозяйственных нужд, снова попадает в круговорот воды. Это, конечно, верно и вполне соответствует высказанной выше закономерности, если речь идет о глобальном круговороте, поскольку система этого процесса замкнута лишь в масштабе земного шара в целом. Но следует ли из этого положения вывод о том, что водные ресурсы неисчерпаемы, что, сколько бы их ни расходовали, они снова возвращаются в то же место или в тот же район, где водные ресурсы изъяты из данного источника. Такое понимание возврата воды в процессе круговорота слишком упрощенно и не соответствует характеру этого процесса в природе. Все дело в том, что вода, испарившаяся в процессе использования для хозяйственных нужд и поступившая в атмосферу в парообразном состоянии, вовсе не обязательно снова выпадет в виде осадков в том же районе. Чаще всего атмосферная влага переносится на большие расстояния и может сконденсироваться и выпасть в виде осадков далеко от района, где она поступила в атмосферу. Если, например, вода, испарившаяся в результате орошения в Средней Азии, даст осадки в Гималаях, где и без того вода в избытке, то для Средней Азии эта вода будет потеряна. А если эта атмосферная влага сконденсируется в виде осадков на акватории океана, то в таком случае она уже оказывается утраченной для суши в целом.

Роль воды в формировании земной поверхности.

Действуя как мощный геологический фактор, вода преобразует облик земного шара. Лучше всех из современных мыслителей роль и всеобъемлющее значение воды в природе и в формировании земной поверхности определил академик В.И. Вернадский; "Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться с нею по влиянию на ход основных, самых грандиозных геологических процессов. Нет земного вещества - минерала, горной породы, живого тела, которое ее бы не заключало. Все земное вещество ею проникнуто и охвачено".

Изо дня в день, непрерывно в течение многих миллиардов лет поверхностные воды в союзе со зноем, холодом и ветром разрушают самые твердые горные породы, размывают горы и возвышенности, смывают почвенный покров, образуют широкие долины, глубокие овраги и ущелья, перемещают огромные массы рыхлого обломочного материала. Необозримые равнины, иногда тянущиеся на тысячи километров с севера на юг и с запада на восток, в основании своем в большинстве случаев имеют осадочные породы. Мощность их может достигать фантастических величин - в Прикаспийской низменности, например, 15 - 20 км. И все это создала природная вода.

По расчетам известного гидролога М.И. Львовича все реки земного шара ежегодно выносят в океан 22 млрд. т. твердых веществ (ила, песка и т.п.), в том числе реки России - 600 млн. т. Выщелачивая горные породы, поверхностные воды еще добавляют в океан ежегодно 3 млрд. т. растворенных веществ. Под действием подземных вод возникают оползни, растворяются известняки и другие горные породы, создаются карстовые воронки и провалы. Геологи подсчитали, что если бы отсутствовали непрерывные тектонические движения земной коры, то поверхность суши при нынешних темпах ее разрушения ветром и водой сравнялось бы с уровнем Мирового океана за весьма непродолжительный по геологическим масштабам промежуток времени - 110 млн. лет. По истечении этого срока Земля представляла бы собой печальное зрелище - идеально гладкий каменный шар.

Эрозионно-аккумулятивные процессы.

Стекающая по склонам земной поверхности и по русловой сети вода производит работу, часть которой затрачивается на отрыв частиц грунта от общей массы почвогрунта и перенос их вниз по течению. При определенных условиях происходит отложение частиц грунта. Разрушение почвогрунта активизируется дождевыми каплями при их разбрызгивании. Процесс разрушения, перемещения и отложения почвогрунта и горной породы под воздействием дождя и движущейся воды называется водной эрозией . Так как водная эрозия способствует сглаживанию рельефа земной поверхности, ее, как и ветровую эрозию, относят к процессам денудации. Твердые частицы - продукты эрозии водосборов и русел, а также абразии берегов водоемов, переносимые водотоками, а также течениями в озерах, морях и водохранилищах и формирующие ложе водоемов, называются наносами.

Водная эрозия и сток наносов - необратимый однонаправленный процесс, так как продукты разрушения не могут быть восстановлены в их первоначальных формах.

Эрозионная деятельность водных потоков отличается большим разнообразием. В соответствии с видами стока различают эрозию склоновую и русловую . Эрозия поверхности начинается со смыва дисперсных частиц, утративших связь с основным массивом грунта. Унос частиц грунта прекращается или ослабевает после образования выступов шероховатости. С увеличением скорости движения воды происходит подмыв с тыловой стороны выступа, обуславливающий возрастание лобовой и подъемной силы потока. Подъемная сила возникает в результате несимметричного обтекания потоком частиц грунта. Пульсирующие лобовая и подъемная силы вследствие турбулентности потока отрывают частицы грунта от дна. Однако процесс водной эрозии нельзя свести только к механическому взаимодействию потока и грунта. В действительности проявляется совокупность гидромеханических, физико-химических и биологических процессов.

Классификация видов эрозии Г.И. Швебса:

1. Эрозия разбрызгивания . Возникает при разбрызгивании дождевых капель, падающих на поверхность почвогрунта. Скорость падения капель увеличивается с ростом их диаметра, а диаметр капель увеличивается с усилением интенсивности дождя.

2. Поверхностный смыв . Происходит при образовании поверхностного стока в микроструктурах почвогрунта при глубине потока, соизмеримой с размерами частиц, перемещаемых водой.

3. Струйчатая эрозия . Проявляется при образовании струй и ручьев в поверхностном стоке.

4. Овражная эрозия . Образуется в результате концентрации потока на крутых склонах, сложенных легкоразмываемыми грунтами. В результате формируется глубокий врез в грунт, вызывающий обвалы, оползание и оплывание склонов.

5. Русловая эрозия . Русловая эрозия - размыв водными потоками, протекающими в руслах, коренных пород дна и берегов русла и склонов долин. Она обусловлена динамикой руслового потока и эрозионными процессами на водосборе и в русле.

6. Селевый поток . Сель - стремительный поток большой разрушительной силы, состоящий из смеси воды и рыхлых обломочных пород и возникающий внезапно в бассейнах небольших горных рек в результате интенсивных дождей или бурного таяния снега, а также прорыва завалов и морен.

7. Подземная эрозия . Проявляется в деформации трещин и ходов в почвогрунтах и горных породах под действием потока, развивается в условиях интенсивного выщелачивания и карстообразования.

Эрозия сопровождается процессом аккумуляции наносов, продуктов разрушения в понижениях рельефа, в русловой сети, водохранилищах и др. Поэтому в гидрологии эрозионно-аккумулятивные явления рассматриваются как единый процесс.

Продукты эрозионной работы транспортируются речными потоками в виде взвешенных и влекомых наносов и в виде растворов. Взвешенные наносы - мелкие минеральные частицы (диаметр не более 3 мм), переносимые водным потоком во взвешенном состоянии. Более крупные наносы перемещаются влечением по дну. В больших реках на долю влекомых наносов приходится в среднем менее 5% (от взвешенных). Сток влекомых наносов малых горных рек, впадающих в моря, составляет 50 - 90 % от стока взвешенных наносов. Размер стока взвешенных наносов больших рек - достоверный критерий интенсивности процесса водной эрозии на определенной части суши.

Формирование русла определяют донные наносы, поэтому их часто называют руслоформирующими. Относительно крупные зерна, двигаясь в наиболее насыщенной наносами придонной области, постоянно сталкиваются и касаются друг друга. Движение донных наносов и характеристика речного потока тесно взаимосвязаны. Существующие неровности дна, в том числе шероховатость, образуемая донными наносами, генерируют повышенную турбулентность потока. В свою очередь локальные турбулентные импульсы усиливают неравномерность перемещений наносов и связанные с этим неровности дна. В результате взаимодействия потока с дном в русле рек возникают гряды донных наносов. Гряды постепенно перемещаются вниз по течению. Повороты русла, поперечная циркуляция и другие причины приводят к местным скоплениям наносов. Характер их образования и перемещений определяет тип русла: прямолинейное, извилистое, разбросанное.

Русловые процессы.

Русловой процесс представляет собой постоянно происходящие изменения морфологического строения русла водотока и поймы, обусловленные действием текучей воды. Русловой процесс является результатом сложного, саморегулирующего взаимодействия между потоком и руслом. Русловые процессы подразделяются на необратимые и обратимые.

Рис.2.2 Типы русловых процессов рек.

1 - ленточно-грядовой тип; 2 - побочневый тип; 3 - ограниченное меандрирование; 4 - свободное меандрирование; 5 - незавершенное меандрирование; 6 - русловая многорукавность; 7 - пойменная многорукавность.

Необратимые русловые процессы обусловлены однонаправленным изменением водного режима водотока. Они выражают медленный процесс развития морфологических характеристик реки, относящихся главным образом к продольному профилю реки. К однонаправленным процессам также изменения морфологического строения русла, вызванные воздействием гидротехнических сооружений на речное русло, рассчитанных на длительный срок службы.

К обратимым русловым процессам относятся сезонные изменения рельефа дна реки на перекатах и плесах, перемещения песчаных гряд, побочней, осередков, подмывы и намывы берегов, меандрирование, возникновение проток и их отмирание. Обратимые изменения формы дна потока рассматриваются как внешнее проявление движения наносов за счет их переотложения в русле и пойме и поступления в реку с водосборного бассейна.

Русловый процесс имеет дискретную структуру, в которой выделяются структурные элементы разных размеров с присущими им закономерностями формирования. К структурным элементам относятся:

1. Отдельные твердые частицы.

2. Микроформы - мелкие песчаные гряды.

3. Мезоформы - средние русловые формы, представляющие собой сравнительно крупные подвижные русловые формы (побочни, осередки, большие гряды).

4. Макроформы - речные излучины.

Определенная схема деформации русла и поймы реки, возникающая в результате сочетания особенностей водного режима и стока наносов, обуславливают тип руслового процесса. Различают следующие типы руслового процесса рек:

1. Ленточно-грядовой тип . В русле происходит движение системы гряд, искривленных в плане под влиянием придонных скоростей. Расстояние между вершинами (гребнями) гряд в направлении движения потока, называемое шагом гряд, существенно больше ширины русла. Русло малоизвилистое, движение гряд происходит в основном при повышенной водности.

2. Побочневый тип . По сравнению с предыдущим типом гребни гряд перекошены, направления перекосов смежных гряд чередуются.

3. Ограниченное меандрирование . Для этого типа руслового процесса характерна сравнительно слабая извилистость русла; могут возникать отдельные пойменные массивы. Пойменный массив - участок поймы, ограниченный участками русла реки; в своих крайних точках он соприкасается со склоном долины. Ограниченное меандрирование наблюдается там, где развитие меандр ограниченно склонами долин, уступами древних террас и береговыми валами, сложенными неразмываемыми породами.

4. Свободное меандрирование . Русло реки сильно меандрирует в широкой пойме со староречьями. После прорыва перешейка между смежными излучинами начинает развиваться новая излучина.

5. Незавершенное меандрирование . При этом типе руслового процесса излучина еще не перешла в состояние петли, а спрямляющая протока пропускает еще значительную часть расхода воды реки.

6. Русловая многорукавность . Возникает при больших расходах донных наносов. Появление рукавов сопровождается образованием широкого распластанного русла. Транспортирующая способность потока полностью реализована, и наносы аккумулируются в русле. Донные наносы перемещаются в виде системы больших разобщенных гряд, образующих в межень небольшие острова, между которыми расположены короткие протоки. Такой тип также называют осередковым .

7. Пойменная многорукавность . Этот тип руслового процесса возникает в широких поймах и характеризуется наличием множества рукавов, которые могут рассматриваться как самостоятельные реки, если их протяженность велика. Пойменная многорукавность является в то же время последующим развитием незавершенного меандрирования.

Многие русловые процессы на реках представляют собой промежуточные формы перечисленных процессов.

Регулятор климата.

Вода - гигантский аккумулятор и распределитель основного источника энергии на Земле - энергии Солнца. Водяные пары атмосферы жаркого пояса Земли частично поглощают солнечную энергию, которая затем воздушными массами под влиянием циклонов и антициклоном переносится в области с умеренным и холодным климатом. Здесь водяной пар переходит в жидкую или твердую фазу, отдавая окружающей среде около 2500 Дж тепловой энергии, при конденсации каждого грамма пара. Представьте теперь, какое гигантское количество тепла переносится водяным паром в атмосфере при ежегодном испарении с поверхности океанов и суши 577000 км3 воды.

Перенос тепла водяным паром в атмосфере - это только одна из планетарных "обязанностей" воды. Вторая "обязанность" водяных паров - защитить нашу планету от космического холода своеобразным тепловым одеялом. По расчетам известного ученого климатолога М.И. Будыко, при уменьшении содержания водяного пара в атмосфере только вдвое средняя температура поверхности Земли понизилась бы более чем на 5°С (с 14,3 до 9°С).

Другим мощным аккумулятором и распределителем солнечной энергии как во времени, так и в пространстве являются океаны и моря. Хорошо известно влияние на климат континентов теплых и холодных океанических течений. Например, для Европы и для всего Северо-запада России исключительным по своему значению является мощное теплое течение Гольфстрим. Оно зарождается в Мексиканском заливе, питается водами Северного и Южного экваториальных течений и по выходе из Флоридского пролива пересекает Атлантический океан с юго-запада на северо-восток. В начале образования ширина Гольфстрима равна 78 км, глубина - 800 м, скорость движения - до 9 км/ч, температура на поверхности воды - до 30°С. Далее, при движении вдоль берегов Северной Америки, его ширина увеличивается до 675 км, скорость течения уменьшается до 3 км/ч. На параллели 38° с. ш., где к Гольфстриму присоединяется Антильское течение, расход (количество воды, протекающее через поперечное сечение в 1 с) достигает 82 млн. м3 /с, что в 22 раза больше расхода в месте его зарождения и в 60 раз больше суммарного расхода всех больших и малых рек земного шара. Если бы не было Гольфстрима, вся Скандинавия, подобно Гренландии, была бы покрыта льдом. По расчетам видного ученого С.В. Калесника, около половины переноса тепла из тропических районов в умеренные и полярные широты осуществляется морскими течениями.

Аккумуляторами и перераспределителями тепла являются каждое озеро, река, пруд, водохранилище, каждая капля воды. Даже в небольших водоемах суточные колебания температуры поверхностных слоев воды не выходят за пределы нескольких градусов, тогда как перепады температуры окружающего воздуха могут достигать 'десятков градусов.

Дождевые и снеговые воды, ежегодно выпадающие на Землю в количестве 577 000 км3 , также способствуют созданию более равномерных климатических условий в разных ее частях. Не будь описанных выше процессов, климат многих районов земного шара был бы совершенно непригоден для жизни.

Влияние течений на климат Земли.

Циркуляция вод Мирового океана определяет обмен количеством вещества, тепла и механической энергии между океаном и атмосферой, поверхностными и


29-04-2015, 00:57


Страницы: 1 2 3 4 5 6
Разделы сайта