В системе KAlSi3 O8 -NaAlSi3 O8 с летучими компонентами кристаллизация идет при более низких температурах, что может привести к распаду твердых растворов и образованию пертитов или антипертитов.
Особенности кристаллизации по закону непрерывного реакционного взаимодействия сохраняются и в более сложных системах.
4.4 Влияние летучих компонентов на кристаллизацию магмы
При кристаллизации расплавов, состоящих из одних силикатов можно не учитывать их летучесть и исключить влияние давления на ход кристаллизации. Однако, если в состав силикатного расплава входят такие летучие компоненты, как H2 O, CO2 , HCl, HF, H2 и т.п. пренебрегать газовой фазой нельзя, так как она участвует в процессе кристаллизации расплава.
Магма или лава всегда содержат летучие компоненты. На это указывают следующие факты: 1) извержение лав любого состава сопровождается вывыделением пара или газа в значительном количестве (на Аляске в вулканической области «Долина десяти тысяч дымов» ежегодно выделяется 1,25 млн. тонн HCL и до 200 тыс. тонн HF); 2) главной составной частью всех поствулканических выделений является вода; 3) все магматические породы содержат в своем составе воду. В граните ее 0,69%, в нефелиновом сиените – 1,38%, в габбро – 1,1%, в риолите – 1,54%, в базальте – 1,69%. В некоторых вулканических стеклах содержание воды достигает 10%. Но горных породах находится только небольшая часть воды, находящейся в магме. При кристаллизации большая часть летучих компонентов выделяется из магмы.
Сколько воды в магме точно неизвестно, но в 1938 г. экспериментами Горансона показано, что растворимость воды в гранитном расплаве ограничена. Гранитный расплав при давлении 100 атм (соответствует глубине 2 км) может растворить лишь 3,75% воды, а при давлении 4000 атм (соответствует глубине 15 км) – 9,25%. Во всяком случае нельзя считать, что магма может содержать неограниченное количество воды и других летучих компонентов.
Присутствие летучих компонентов в кристаллизующейся магме или лаве резко отражается на ее свойствах и влияет на ход кристаллизации.
1. Присутствие летучих компонентов резко снижает температуру начала кристаллизации. Установлено, что 1% растворенной в расплаве воды понижает температуру кристаллизации примерно на 50º, то есть при содержании 8–10% воды температура должна понизиться на 400–500 º.
2. Присутствие летучих компонентов резко понижает вязкость силикатного расплава, и, следовательно, способствует росту кристаллов.
В системах с ограниченной растворимостью летучего компонента в силикатном расплаве всегда имеет место резкий переход от расплава к раствору, даже при высоких давлениях. Отсюда следует наличие резкой границы между различными стадиями кристаллизации – магматической и пневматолитовой.
Главная особенность кристаллизации в системах с летучими компонентами – существование «ретроградного кипения», то есть выделения газа при одновременной кристаллизации. Оно начинается при понижении температуры. В результате ретроградного кипения магма превращается в горную породу, пропитанную газовым раствором, который находится в равновесии с породой и поэтому может вызвать перекристаллизацию ее подобно тому, как перекристаллизовывается осадок, остающийся в насыщенном растворе. В дальнейшем, если состав газового раствора изменяется, то он не будет находиться в равновесии с породой, и тогда магматические минералы начнут растворяться и замещаться вторичными минералами.
Таким образом, присутствие в магме воды и других минерализаторов обусловливает возникновение в конце кристаллизации газового раствора. Этот раствор в случае насыщенности его компонентами горной породы вызывает перекристаллизацию породы с образование грубозернистых структур. В другом случае, когда состав раствора отличается от состава горной породы, он вызывает отложение вторичных минералов с образованием различных структур замещения.
Общей особенностью кристаллизации магмы с участием летучих компонентов будет то, что этот процесс проходит в несколько стадий: 1) собственно магматическая стадия. Когда силикат выделяется из магмы, а газовая фаза еще не появляется; 2) «ретроградное кипение», когда из магмы выделяется и силикат и газовая фаза; 3) пневматолитовая стадия, когда силикат выделяется из газа; 4) стадия конденсации, когда появляются водные растворы и 5) гидротермальная стадия, когда силикат выделяется из водного раствора.
4.5 Закономерности парагенетических ассоциаций и последовательность выделения минералов
Подавляющее большинство магматических пород состоит из нескольких минеральных видов, они называются полиминеральными (гранит, гранодиорит, сиенит). Реже встречаются биминеральные (габбро, диорит) и мономинеральные (лабрадорит, пироксенит, оливинит) породы.
В состав полиминеральных пород могут входить многие минеральные виды, но в сочетании минералов, слагающих ту или иную магматическую породу, всегда есть закономерности, обусловленные физико-химическими законами, управляющими кристаллизацией магматического расплава. Парагенетические ассоциации в магматических породах, возникших в различные геологические эпохи, очень близки, а часто тождественны друг другу. Некоторые минеральные ассоциации невозможны в магматических породах. Для щелочных пород характерны щелочные минералы (например, нефелин, щелочные полевые шпаты, эгирин, щелочной амфибол в нефелиновых сиенитах). В известково-щелочных породах цветные минералы представлены оливином, пироксенами, роговой обманкой. Для кислых пород характерным является кварц. Для средних и некоторых основных – насыщенные кремнеземом силикаты и алюмосиликаты (ортоклаз, альбит, плагиоклазы, амфиболы, пироксены. Для основных и ультраосновных пород характерны недосыщенные минералы (оливин в известково-щелочных и фельдшпатоиды – в щелочных). Для определения минералогического состава горной породы необходимо четко знать не только оптические и морфологические свойства отдельных минералов, но и те парагенетические ассоциации, в которых встречаются породообразующие минералы. Определив два-три минерала необходимо уже ясно представлять себе, что может быть еще в данной породе. Ниже перечисленные главные закономерности парагенезиса минералов в магматических породах обоснованы общими представлениями об образовании этих пород.
1. Кварц не может быть вместе с фельдшпатоидами (нефелином и лейцитом).
2. Оливин не встречается с кварцем, калиевым полевым шпатом, кислым плагиоклазом и биотитом.
3. Щелочные пироксены и амфиболы находятся обычно с нефелином и не находятся с кварцем.
4. Зеленая роговая обманка встречается в кислых интрузивных породах (с кислым плагиоклазом и биотитом). В основных интрузивных породах (с основным плагиоклазом, пироксеном и оливином) находится обычно бурая роговая обманка.
5. Зеленая роговая обманка обычно сопровождается сфеном.
6. Мусковит не встречается вместе с пироксеном и роговой обманкой.
7. В нормальных) известково-щелочных) породах роговая обманка обрастает пироксен, в щелочных – щелочной амфибол может иметь каемку из щелочного пироксена (эгирина).
8. Базальтическая роговая обманка встречается только в кайнотипных эффузивных породах.
9. Лейцит встречается только в кайнотипных эффузивных породах. В интрузивных породах он переходит в псевдолейцит (псевдоморфозы из нефелина и калиевого полевого шпата).
10. Санидин находится только в эффузивных кайнотипных породах.
4.6 Реакционные ряды минералов
На основании исследования силикатных расплавов и минерального состава магматических пород Н. Боуэн изобразил последовательность выделения минералов из магмы в виде двух реакционных рядов: прерывно-реакционного ряда фемических минералов и непрерывно-реакционного ряда салических минералов. В прерывно-реакционном ряду выделение происходит в следующем порядке: оливин→ромбический пироксен→моноклинный пироксен→амфибол→биотит. В непрерывно-реакционном ряду выделение происходит в следующем порядке: основной плагиоклаз→средний плагиоклаз→кислый плагиоклаз→калиевый полевой шпат.
Каждому члену первого ряда соответствует определенный член второго ряда. Совместная кристаллизация минералов двух реакционных рядов протекает с образованием эвтектики и в этом случае последовательность выделения зависит от состава расплава.
Порядок выделения фемических минералов в породах нормального ряда также иногда нарушается в связи с тем, что каждый фемический минерал сам является членом изоморфного ряда, в котором магнезиальные компоненты являются более тугоплавкими, чем железистые. Поэтому в магмах, богатых железом может наблюдаться отступление от обычного порядка выделения. Например, в траппах содержится высокожелезистый гиперстен, который образовался позже моноклинного пироксена. В некоторых породах можно встретить железистый оливин, образовавшийся вместе с калиевым полевым шпатом, тогда как магнезиальный оливин кристаллизуется одновременно с основными плагиоклазами.
Кристаллизация начинается с наиболее высокотемпературных минералов: с оливина в левом ряду и анортита в правом. При понижении температуры ранее выделившиеся минералы реагируют с остаточной жидкостью, образуя нижестоящие минералы. Путем закалки было установлено, что кристаллизация расплава, соответствующего энстатиту, начинается с выделения кристаллов форстерита. При медленном понижении температуры он реагирует с остаточной жидкостью, обогащенной кремнеземом, и переходит в энстатит по схеме Mg2 SiO4 +SiO2 →Mg2 Si2 O6 . При быстром же застывании, или фракционировании, оливин может сохраниться в породе. При реакции оливина с расплавом возникает новый минерал – пироксен. Такое качественное изменение ранее выделившихся минералов при реакции их с остаточным расплавом характерно для левого ряда, который представляет собой так называемую прерывную реакционную серию. Каждый минерал прерывной серии, может сам являться членом непрерывной реакционной серии.
Магнезиальный оливин распространен в породах, недосыщенных кремнеземом, и ассоциирует с наиболее основными плагиоклазами. Железистые разновидности могут встречаться и в более богатых кремнеземом породах в ассоциации с кислым плагиоклазом.
Правый ряд представляет собой непрерывную серию плагиоклазов, характерной особенностью которых является их совершенный изоморфизм. Кристаллизация плагиоклаза всегда начинается с выделения члена изоморфного ряда, обогащенного анортитовой составляющей. При медленном остывании выделившийся плагиоклаз вступает в реакцию с остаточным расплавом и преобразуется во все более кислые разновидности. При всех этих процессах новых минеральных видов не возникает, то есть изменения постепенны, чем и обусловлено название «непрерывная реакционная серия». В конце кристаллизации оба ряда сливаются в один, заключающий конечные продукты кристаллизации магмы – калиевый полевой шпат и кварц.
Кристаллизация минералов прерывной и непрерывной серий может идти параллельно. На это указывает наличие эвтектики между минералами обоих рядов, наблюдаемых непосредственно в породах и установленных экспериментально.
Установлено, что кристаллизация по вышеприведенной схеме осуществляется при сопутствующем выделении рудных минералов, чему способствует постоянная и довольно значительная величина парциального давления кислорода. При низком и изменяющемся давлении кислорода кристаллизуются главным образом силикатные минералы, а в остаточном расплаве накапливаются оксиды железа. Эта схема осуществляется в платформенных «псевдостратифицированных» интрузиях.
Экспериментальное изучение силикатных систем, близких по составу к горным породам, дает возможность определить причину постоянства их состава. Так, например, общая лейкократовость гранитов по сравнению с габбро связана с положением соответствующих точек эвтектики и обогащением остаточных расплавов кремнеземом. Таким образом, реакционный принцип Боуэна справедлив для многих пород. Но в нем не учитываются железистость фемических минералов, определяющая ход кристаллизации, и роль давления, изменяющая фазовые взаимоотношения в системах.
Список литературы
1. Белоусова О.Н., Михина В.В. Общий курс петрографии. М.: Недра, 1972. 344 с.
2. Вильямс Х., Тернер Ф., Гилберт Ч. Петрография. Т. 1. М.: Мир, 1985. 301 с.
3. Вильямс Х., Тернер Ф., Гилберт Ч. Петрография. Т. 2. М.: Мир, 1985. 320 с.
4. Винклер Генезис метаморфических пород. М.: Недра, 1979. 328 с.
5. Даминова А.М. Петрография магматических горных пород. М.: Недра, 1967. 231 с.
6. Дмитриев С.Д. Основы петрографии. Иркутск: Изд-во Иркутского ун-та, 1986. 303 с.
7. Емельяненко П.Ф., Яковлева Е.Б. Петрография магматических и метаморфических пород. М.: МГУ, 1985. 248 с.
8. Заридзе Г.М. Петрография. М.: Недра, 1988. 389 с.
9. Малеев Е.Ф. Вулканиты. Справочник. М.: Недра, 1980. 240 с.
10. Саранчина Г.М., Шинкарев Н.Ф. Петрология магматических и метаморфических пород. Л.: Недра, 1973. 392 с.
11. Трусова И.Ф., Чернов В.И. Петрография магматических и метаморфических пород. М.: Недра, 1982. 289 с.
12. Хьюджес Ч. Петрология изверженных пород. М.: Недра, 1988. 319 с.
29-04-2015, 01:09