Представляя слабое взаимодействие в виде калибровочного поля, физики исходят из того, что все частицы, участвующие в слабом взаимодействии, служат источниками поля нового типа - поля слабых сил. Слабо взаимодействующие частицы, такие, как электроны и нейтрино, являются носителями "слабого заряда", который аналогичен электрическому заряду и связывает эти частицы со слабым полем.
Для представления поля слабого взаимодействия как калибровочного прежде всего необходимо установить точную форму соответствующей калибровочной симметрии. Дело в том, что симметрия слабого взаимодействия гораздо сложнее электромагнитного. Ведь и сам механизм этого взаимодействия оказывается более сложным. Во-первых, при распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино). Во-вторых, действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц.
Это определяет то обстоятельство, что слабому взаимодействию соответствует более сложная калибровочная симметрия, связанная с изменением природы частиц. Выяснилось, что для поддержания симметрии здесь необходимы три новых силовых поля, в отличие от единственного электромагнитного поля. Было получено и квантовое описание этих трех полей: должны существовать три новых типа частиц - переносчиков взаимодействия, по одному для каждого поля. Все весте они называются тяжелыми векторными бозонами со спином 1 и являются переносчиками слабого взаимодействия.
Частицы W + и W - являются переносчиками двух из трех связанных со слабым взаимодействием полей. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Z -частицы. Существование Z -частицы означает, что слабое взаимодействие может не сопровождаться переносом электрического заряда.
В создании теории электрослабого взаимодействия ключевую роль сыграло понятие спонтанного нарушения симметрии: не всякое решение задачи обязано обладать всеми свойствами его исходного уровня. Так, частицы, совершенно разные при низких энергиях, при высоких энергиях могут оказаться на самом деле одной и той же частицей, но находящейся в разных состояниях. Опираясь на идею спонтанного нарушения симметрии, авторы теории электрослабого взаимодействия Вайнберг и Салам сумели решить великую теоретическую проблему - они совместили казалось бы несовместимые вещи (значительная масса переносчиков слабого взаимодействия, с одной стороны, и идею калибровочной инвариантности, которая предполагает дальнодействующий характер калибровочного поля, а значит нулевую массу покоя частиц-переносчиков, с другой) и таким образом соединили электромагнетизм и слабое взаимодействие в единой теории калибровочного поля.
В этой теории представлено всего четыре поля: электромагнитное поле и три поля, соответствующие слабым взаимодействиям. Кроме того, введено постоянное на всем пространстве скалярное поле (т. н. поля Хиггса), с которым частицы взаимодействуют по разному, что и определяет различие их масс. (Кванты скалярного поля представляют собой новые элементарные частицы с нулевым спином. Их называют хиггсовскими (по имени физика П.Хиггса, предположившего их существование). Число таких хиггсовских бозонов может достигать нескольких десятков. На опыте такие бозоны пока не обнаружены. Более того, ряд физиков считает их существование необязательным, но совершенной теоретической модели без хиггсовскмих бозонов пока не найдено) Первоначально W и Z -кванты не имеют массы, но нарушение симметрии приводит к тому, что некоторые частицы Хиггса сливаются с W и Z -частицами, наделяя их массой.
Различия свойств электромагнитного и слабого взаимодействий теория объясняет нарушением симметрии. Если бы симметрия не нарушалась, то оба взаимодействия были бы сравнимы по величине. Нарушение симметрии влечет за собой резкое уменьшение слабого взаимодействия. Можно сказать, что слабое взаимодействие имеет столь малую величину потому, что W и Z -частицы очень массивны. Лептоны редко сближаются на столь малые расстояния (r < 1 0 n см., где n = - 1 6 ). Но при больших энергиях (> 1 0 0 Гэв), когда частицы W и Z могут свободно рождаться, обмен W и Z бозонами осуществляется столь же легко, как и обмен фотонами (безмассовыми частицами). Разница между фотонами и бозонами стирается.В этих условиях должно существовать полная симметрия между электромагнитным и слабым взаимодействием - электрослабое взаимодействие.
Проверка новой теории заключалась в подтверждении существования гипотетических W и Z -частиц. Их открытие стало возможным только с созданием очень больших ускорителей новейшего типа. Открытие в 1983 г. W и Z -частиц означало торжество теории электрослабого взаимодействия. Не было больше нужды говорить о четырех фундаментальных взаимодействиях. Их осталось три.
2.4. Квантовая хромодинамика
Следующий шаг на пути Великого объединения фундаментальных взаимодействий - слияние сильного взаимодействия с электрослабым. Для этого необходимо придать черты калибровочного поля сильному взаимодействию и ввести обобщенное представление об изотопической симметрии. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны.
Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом (Разумеется, это название не имеет никакого отношения к обычному цвету). Если электромагнитное поле порождается зарядом только одного сорта, то для создания более сложного глюонного поля потребовалось три различных цветовых заряда. Каждый кварк "окрашен" в один из трех возможных цветов, которые совершенно произвольно были названы красным, зеленым и синим. И соответственно антикварки бывают антикрасные, антизеленые и антисиние.
На следующем этапе теория сильного взаимодействия развивается по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами - переносчиками этих полей являются глюоны, и, таким образом, из теории следует, что должно быть целых восемь различных типов глюонов. (В то время как переносчик электромагнитного взаимодействия - всего лишь один (фотона), а переносчиков слабого взаимодействия - три.) Глюоны имеют нулевую массу покоя и спин 1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизеленый). Поэтому, испускание или поглощение глюона сопровождается изменением цвета кварка ("игра цветов"). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк, а зеленый кварк, поглощая сине-антизеленый глюон, превращается в синий кварк. В протоне, например, три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения носят не произвольный характер, а подчиняются жесткому правилу: в любой момент времени "суммарный" цвет трех кварков должен представлять собой белый свет, т.е. сумму "красный + зеленый + синий". Это распространяется и на мезоны, состоящие из пары кварк - антикварк. Поскольку антикварк характеризуется антицветом, такая комбинация заведомо бесцветна ("белая"), например красный кварк в комбинации с антикрасным кварком образует бесцветный мезон.
С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определенную абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на два глюона или два глюона слить в один - поэтому и появляются нелинейные члены в уравнении глюонного поля), сложную структуру адрона, состоящего из "одетых" в облака кварков и др.
Возможно, пока преждевременно оценивать квантовую хромодинамику как окончательную и завершенную теорию сильного взаимодействия, тем не менее ее достижения многообещающи.
Заключение.
Происхождение многих свойств элементарных частиц и природа присущих им взаимодействий в значительной мере остаются неясными. Возможно, понадобится ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и геометрических свойств пространства-времени, прежде чем теория элементарных частиц будет построена.
ЛИТЕРАТУРА
Алексеев В.П. Становление человечества. М.,1984. Бор Н. Атомная физика и человеческое познание. М.,1961 Борн М. Эйнштейновская теория относительности.М.,1964.
Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. М.,1979.
Кемпфер Ф. Путь в современную физику. М.,1972.
Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.
Баженов Л.Б. Строение и функции естественнонаучной теории. М.,1978.
Розенталь И.Л. Элементарные частицы и структура Вселенной. М, 1984.
29-04-2015, 02:10