Симметрия и асимметрия

обозначающая процесс существова­ния и становления тождественных моментов в определенных условиях и в определенных отношениях между различными и проти­воположными состояниями явлений мира.

Действительно ли является всеобщим
сформулированное нами определение понятия симметрии, охватывает
ли оно все известные нам формы проявления симметрии как в объективном мире, так и в процессе нашего познания? Очевидно, что
при ответе на этот вопрос придется ограничиться только наиболее
общими характерными примерами. Представим себе две точки, находящиеся по отношению к какой-то прямой на ее противоположных
сторонах; если эти противоположные точки равноудалены от этой
прямой, то о них говорят как о симметричных по отношению к
данной прямой. Если мы теперь совершим операцию перегиба, то
в результате наши точки полностью совпадут, сольются друг с другом,
следовательно, можно говорить об их полном тождестве. Симметрия
расположения данных точек указывает именно на то, при каком
процессе и при каких условиях они становятся тождественными.
Значит, этот вид симметрии полностью подходит под сформулирован-
ное определение симметрии. Как известно, существует определенная
симметрия между протоном и нейтроном; она выражается в том, что
в условиях сильных взаимодействий они не отличаются друг от друга,
становятся тождественными друг другу. Их симметрия и есть не что иное, как образование тождества между этими различными части-
цами в процессе сильных взаимодействий. В понятии изотопического
спина как раз и выражаются моменты тождества, имеющиеся у
протонов и нейтронов, т. е. их симметрия в условиях сильного
взаимодействия. Но подходят ли под данное определение симметрии
такие общие симметрии пространства и времени, как, например, их
однородность?

Однородность пространства означает, что по отношению к вза-
имодействиям явлений все места в пространстве тождественны и ни-
как не сказываются на характере взаимодействия. Тождествен-
ность всех мест в пространстве (точек в пространстве) по отноше-
нию к взаимодействиям явлений и есть их,строгая полная симметрия.
То же в общем виде можно сказать и об однородности времени.
Тождественность всех временных интервалов по отношению к взаимо-

. действию явлений и есть их строгая и полная,симметрия. На наш
взгляд, нельзя найти ни одного вида симметрии, который бы
противоречил данному нами определению. Но это не значит, что
данное определение симметрии является законченным и вполне
строгим — видимо, будут необходимы какие-то его уточнения.

Сформулированное определение понятия симметрии позволяет
распространить это понятие на все атрибуты материи, на все ее
состояния и структуры, а также на все типы связей и взаимодействий.
Так, группа преобразований Лоренца выражает существующую сим-
метрию во взаимосвязи пространства, времени и движения — этих
атрибутов материи'. Симметрия группы изотопического спина выра-
жает тождественные моменты по отношению к сильным взаимодей-
ствиям у частиц, участвующих в этих взаимодействиях.

В первом издании этой книги (1968) мы писали: «Поскольку
существуют различные взаимодействия, и даже во многих отноше-
ниях противоположные, как, например, сильные и слабые, то есте-
ственно допустить, что в них при определенных условиях возникают
и существуют тождественные моменты, т. е. им свойственна опреде-
ленная симметричность. Открытие такой симметрии было бы значи-
тельным шагом вперед в деле создания теории элементарных
частиц. В настоящее время связь между известными видами взаимо-
действия в физике еще не установлена, но можно предвидеть эти
связи исходя из принципа симметрии». Теперь эти связи между
сильным, слабым и электромагнитным взаимодействиями установле-
ны, и это действительно явилось важным звеном в развитии теории
элеменарных частиц. Хотелось бы высказаться против жесткого
разделения многообразных видов симметрии на геометрические и
динамические. Первые отражают свойства симметрии пространства и
времени, а вторые — свойства симметрии состояния взаимодействия.
Но поскольку пространство, время, движение и входящее в него вза имодействие внутренне связаны между собой, должна быть внут-
ренняя связь также между геометрической и динамической сим-
метриями. И она на самом деле существует. Так, симметрия равно-
мерного прямолинейного движения и покоя (одна из черт сим-
метрии группы Галилея), очевидно, не может быть охарактери-
зована только как динамическая или только как геометрическая.
В ней выражены свойства симметрии как пространства и времени',
так и состояния движения. Вообще любая симметрия в своей основе
имеет единство и взаимосвязь различных атрибутов материи. Правда,
не всегда эта взаимосвязь носит непосредственный характер, что
и создает возможность разделения видов симметрии на геометри-
ческие и динамические. Оба эти вида симметрии могут быть вы-
ражены и в динамической, и в геометрической форме. Так, группу
симметрии изотопического спина, которая обычно относится к дина-
мической симметрии, можно выразить и в геометрической форме;
ядерные взаимодействия инвариантны относительно поворотов в изо-
топическом пространстве. Из этой формулировки можно получить
ряд характеристик взаимодействия нуклонов, например, положение
о том, что ядерные силы между протоном и протоном и протоном
и нейтроном одинаковы, и ряд других. При изучении различных видов
симметрии весьма важно учитывать единство атрибутов материи, а
следовательно, и внутреннюю связь между симметриями их свойств
и состояний. Значение этого положения особенно ясно выступает
при изучении вопроса о взаимоотношении группы симметрии и зако-
нов сохранения.

По этому вопросу существуют две точки зрения.

Часть физиков (Берестецкий, Вигнер, Штейнман и др.) утверж-
дает, что фундаментом законов сохранения являются формы геомет-
рической симметрии, в то время как другие, наоборот, считают,
что законы сохранения определяют формы геометрической сим-
метрии.. Согласно первой точке зрения, например, однородность
времени определяет закон сохранения энергии, а согласно второй—
закон сохранения энергии определяет однородность времени. Мы
думаем, что обе точки зрения являются некоторой абсолютизацией
возможных подходов к проблеме. Наличие обеих точек зрения про-
явилось в том, что возникло мнение о разделении законов сохранения
на две группы: наиболее общие из них связаны с геометрическими
симметриями, а менее общие — с динамическими.

Так, законы сохранения оказались разделенными на две группы:
кинематические (основанные на геометрических симметриях) и
динамические (основанные на динамических симметриях). К первой
группе относятся законы сохранения энергии, импульса, момента
импульса, ко второй — закон сохранения электрического заряда,
барионного числа, лептонного числа, изотопического спина и ряд
других.

Такое разделение законов сохранения в итоге основано на игно-
рировании единства атрибутов материи и на таком следствии этого игнорирования, как противопоставление динамических и геоме-
трических симметрий друг другу. Непосредственной же предпосылкой
деления законов сохранения на две группы является убеждение,
что законы сохранения зависят от определенных симметрий.
Бесспорно, что между формами симметрии и законами сохранения
существует глубокая связь, но эту связь нельзя преувеличивать.
С определенными симметриями связаны не сами законы сохранения,"
а определенные формы их проявления. Так, известные нам формы
проявления закона сохранения энергии, конечно, связаны с однород-
ностью времени, но в целом этот закон может быть связан и с другими
геометрическими симметриями, пока нам не известными. Кроме того,
каждый закон сохранения связан и с,определенными формами
асимметрии, об этом подробнее будет сказано ниже.

Формы симметрии и формы закона сохранения всегда взаимосвя-
заны, но в целом как симметрия, так и законы сохранения пред-
ставляют собой две различные, отнюдь не изолированные друг от
друга стороны единой закономерности мира.

Перейдем теперь к характеристике необходимых предпосылок
для определения асимметрии.

Как и для определения симметрии, так и для определения асим-
метрии непосредственной предпосылкой, основанием является диа-
лектика тождества и различия.

Вместе с процессами становления тождества в различном и
противоположном происходят процессы становления различий и
противоположностей в едином, тождественном, целом. Если основой
симметрии можно считать возникновение единого, то основу асим-
метрии нужно полагать в раздвоении единого на противополож-
ные стороны. Понятие асимметрии, как и понятие симметрии,
применимо ко всем атрибутам материи и выражает их различие, их
особенность по отношению друг к другу. Поэтому взаимосвязь
атрибутов материи выражается не только симметрией, но и асиммет-
рией. Применимо понятие асимметрии и к различным состояниям
атрибутов материи и их взаимосвязи. Вообще говоря, где применима
симметрия, там применима и асимметрия, и наоборот.

Исходя из сказанного можно дать следующее определение асим-
метрии: асимметрией называется категория, которая обозначает
существование и становление в определенных условиях и отношениях
различий и противоположностей внутри единства, тождества, цель-
ности явлений мира.

Рассмотрим некоторые виды асимметрии.

Весьма общим видом асимметрии является однонаправленность
хода времени, полнейшая невозможность фактической замены
настоящего прошедшим или будущим, а будущего — прошедшим или
настоящим, в свою очередь прошедшего — настоящим и будущим.
Все эти три состояния времени не заменяют друг друга — в них
на первом плане находится различие. В них нет симметрии. Извест-
ная операция обращения времени, рассматриваемая только как математический прием, основана на том положении, что законы
движения обладают большей устойчивостью и в обозримых интерва-
лах не изменяются. Мы убеждены, что законы явлений мира яв-
ляются вечными и поэтому действуют во всех состояниях времени:
настоящем, прошедшем и будущем. Значит, операция обращения
времени имеет реальный смысл лишь постольку, поскольку в какой-то
мере наше убеждение в полной устойчивости, вечности законов
явлений мира отвечает действительности.

Объективная диалектика обратимых и необратимых процессов
может быть выражена единством симметрии и асимметрии времени.
Необратимость является существенной характеристикой всякого раз-
вития: исходящая и нисходящая, прогрессивная и регрессивная
ветви развития сами по себе необратимы и асимметричны. Однако
соединенные общим и единым процессом развития, они с необходи-
мостью приводят к симметричным ситуациям: повторениям на ка-
чественно новых уровнях спиралеобразного движения.

Особым вариантом понятий симметрии и асимметрии являются
понятия ритма и аритмии. Регулярная повторяемость подавляющего
большинства процессов в природе, их устойчивое чередование (в жи-
вой природе, например, упорядоченная во времени смена поколений,
в неживой природе — повторяющиеся космические процессы) позво-
ляет видеть в ритмических процессах одну из фундаментальных
симметрий природы, С другой стороны, аритмия — это одна из ха-
рактеристик объективной асимметрии, суть которой в нерегулярной
и случайной смене и чередовании процессов. Понятия ритма и арит-
мии могут быть экстраполированы на процесс развития, поскольку
асимметричное время как атрибут развития придает смысл ритму и
аритмии. Вне времени они просто лишены смысла.

Симметрия обращения времени, таким образом, является резуль-
татом абстрагирования от изменчивости, присущей законам явлений
мира. И только в рамках применимости этой абстракции обращение
времени в уравнениях, выражающих законы движения, не противо-
речит действительности. В самом деле, в каких-то очень широких
пределах мы можем считать законы явлений мира вечными, а
следовательно, и допускать операцию обращения времени. Призна-
вая, что у нас сейчас нет никаких оснований утверждать, что в
действительности время может идти и от будущего к прошедшему,
все же в связи с высказанными выше положениями о единстве
атрибутов материи и о взаимопроникновении тождества и различия
напрашивается вопрос: если состояния времени глубоко различны,
то существует ли в каждом различии и тождество?

Время необратимо, его состояния не эквивалентны друг другу,
но, может быть, все же есть и моменты тождества между ними,
может быть, в необратимости времени есть и моменты его обра-
тимости, может быть, его состояния в каких-то отношениях
взаимозаменяемы, как взаимозаменяемы измерения пространства?
Мы думаем, что в различных состояниях времени есть и моменты их тождества, а в общей его необратимости есть моменты его об-
ратимости. Не рассматривая далее этого вопроса, только отметим,
что должны же быть реальные, природные основания для возмож-
ности обратного хода времени в отражении объективных событий,
как, например, на киноленте кадры, движущиеся в обратном на-
правлении? То, что реально существует в отражении, должно иметь
моменты каких-то реальных прообразов и в том, что отражается.
Поэтому в математической модели позитрона как электрона, дви-
жущегося из будущего в прошедшее, есть, видимо, какой-то
реальный смысл. Вообще факты асимметрии так же многочисленны
и многообразны, как и факты симметрии.

Асимметрия — такой же необходимый момент в структуре, в
изменении и во взаимосвязи явлений мира, как и симметрия. Асим-
метрия необходимо имеет место и в самой симметрии. Так, в сим-
метрии состояний покоя и равномерного прямолинейного движения
по отношению к законам движения есть все же асимметричность,
которая состоит в неравноправности этих их состояний и проявляется
в ряде различий между состояниями покоя и равномерного прямо-
линейного движения. У тела, покоящегося в данной системе отсчета
по отношению ко всем другим телам, покоящимся и движущимся
в этой же системе отсчета, скорость будет равна нулю, а у тела
движущегося скорость по отношению ко всем покоящимся и дви-
жущимся телам в данной системе отсчета будет иметь определенное
значение и только в частном случае равна нулю. Отсюда далеко
не полная эквивалентность состояний В практике эта асимметрия проявляется весьма резко — ведь
далеко не безразлично, движется ли поезд из Москвы к Ленинграду
или Ленинград движется навстречу поезду. Очевидно, что энергия
передается для передвижения поезда, а не расходуется на пере-
движение Ленинграда. Операция приближения поезда к Ленинграду
и опе а ии п иближения Ленинграда к поезду не эквивалентны и не взаимозаменяемы.

Весьма общими примерами асимметрии являются асимметрия
между фермионами и бозонами, асимметрия между реакциями
порождения и поглощения нейтрино, асимметрия спинов электронов,
асимметрия в прямых и обратных превращениях энергии.

Уже из определений симметрии и асимметрии следует их не-
разрывное единство.

Это обстоятельство в какой-то мере подчеркнуто А. В. Шубни-
ковым: «Какой бы трактовки симметрии мы ни придерживались, одно
остается обязательным: нельзя рассматривать симметрию без ее
антипода — дисимметрии» (29, 162).

По нашему мнению, более точным является название не «принцип
симметрии», а принцип единства симметрии и асимметрии.

Во всех реальных явлениях симметрия и асимметрия сочетаются
друг с другом. И надо думать, что во всех правильных, т. е. соот ветствующих действительности, научных обобщениях имеют место
не просто те или иные симметрии или асимметрии, а определенные
формы их единства.

Так, в группах преобразования Галилея и Лоренца наряду с чер-
тами симметрии существуют и черты асимметрии.

Например, в преобразованиях Галилея и Лоренца симметричны
все состояния покоя и равномерного прямолинейного движения,
но асимметричны состояния покоя и ускоренного движения.

Задача нахождения единства симметрии и асимметрии каких-
либо явлений сводится к нахождению таких групп операций,
в которых раскрывается как тождественное в различном, так и
различное в тождественном. Поэтому прежде чем поставить задачу
нахождения симметрии в данном явлении или совокупности явле-
ний по отношению к каким-то группам операций, необходимо
установить различия между сторонами данного явления или между
явлениями в их совокупности, так как симметрия представляет собой
наличие тождества не вообще, а только в различном. Если же мы
имеем совокупность абсолютно тождественных явлений, то никакой
симметрии в этой совокупности по отношению к любой группе
операции быть не может.

Значит, прежде чем искать симметрию, нужно найти асимметрию.
Прежде чем была установлена симметрия протонов и нейтронов по
отношению к сильным взаимодействиям, было установлено разли-
чие между ними, их определенная асимметричность по отношению
к электромагнитным взаимодействиям. Частицы и античастицы асим-
метричны потому, что в противоположности между ними имеются
тождественные моменты, в силу чего они и являются зеркальными
отражениями друг друга. Единство симметрии и асимметрии заклю-
чается и в том, что они предшествуют одна другой.

Диалектическое единство, присущее объективным процессам сим-
метрии и асимметрии, позволяет выдвинуть в качестве одного из
принципов познания принцип диалектического единства симметрии
и асимметрии,
согласно которому всякому объекту присуща та или
иная форма единства симметрии и


29-04-2015, 02:12


Страницы: 1 2 3
Разделы сайта