Основные представления о специальной и общей теории относительности

________
Ö1 - (v /c )2

.

(21)

Энергия имеет ту же размерность и измеряется в тех же единицах, что и энергия в ньютоновской механике.

Энергия частицы в той системе отсчета, в которой она покоится, называется ее энергией покоя E 0 :

E 0 = mc 2 .

При  = v /c  0 релятивистское выражение для энергии частицы может быть записано в виде

E = mc 2 +

m v 2

2

= E 0 +

m v 2

2

.

Второе слагаемое совпадает с кинетической энергией частицы в классической теории. Разность E - mc 2 = T называют кинетической энергией релятивистской частицы.

Из формул (20) и (21) находим полезную формулу для скорости частицы:

®
v

= c 2

®
p

E

.

(22)

3.2 Релятивистские преобразования энергии и импульса

Рассмотрим вновь две инерциальные системы отсчета, движущиеся друг относительно друга со скоростью V в направлении оси x .

Закон преобразования для величин (E , ) и (E , ), измеряемых в системах S и S , имеет форму преобразования (23):

E ¢ =

E - V px

________
Ö1 - (V /c )2

, px ¢ =

px - E V /c 2

________
Ö1 - (V /c )2

, py ¢ = py , pz ¢ = pz .

(23)

Таким образом,энергия и импульс частицы зависят от выбора системы отсчета, однако существует величина, которая имеет абсолютный смысл. Из формул (23) следует, что

æ
ç
è

E ¢

c

ö
÷
ø

2

-

®
p

¢ 2 =

æ
ç
è

E

c

ö
÷
ø

2

-

®
p

2 = m 2 c 2 ,

из которого следует, что масса частицы одинакова во всех системах отсчета и, следовательно, является релятивистским инвариантом .

Рис. 10

Используя последнее выражение можно легко получить соотношение, связывающее энергию и импульс в релятивистской физике:

.

Эта зависимость энергии от импульса изображена на Рис. 10. При малых значениях импульса E = m c 2 + p 2 /2 m , а при достаточно больших импульсах E = p c .

Иногда формулу (21), записывают в виде E = m (v ) c 2 , вводя "релятивистскую массу" частицы, зависящую от скорости:

m (v ) =

m

________
Ö1 - (v /c )2

.

Саму же формулу (21) истолковывают, как "эквивалентность" энергии и массы в релятивистской физике. Однако такое утверждение приводит лишь к путанице (а в преждние времена вело даже к ожесточенным идеологическим спорам). Масса и энергия совершенно разные характеристики частицы. Масса - инвариант, а энергия - динамическая характеристика, зависящая от выбора системы отсчета. Взаимосвязь энергии и массы частицы имеет место только в системе покоя частицы.

Поэтому понятие "массы, зависящей от скорости" [(m )/([(1 - (v /c )2 )])] лишено физического смысла!

3.3 Частицы с нулевой массой покоя

Если в формулах (20,21) формально положить скорость частицы v = c , то энергия и импульс частицы обращаются в бесконечность. Это значит, что частица с отличной от нуля массой покоя не может двигаться со скоростью света. В релятивистской механике однако предполагается, что существовуют частицы с массой покоя равной нулю, всегда движущиеся со скоростью света. Из (22) видно, что для таких частиц модуль импульса и энергия связаны соотношением:

|

®
p

| =

E

c

,

откуда следует, что здесь

(E /c )2 -

®
p

2

= 0

в соответствии с тем, что m = 0.

К частицам с нулевой массой покоя относятся, например, фотоны - кванты электромагнитного поля. В больших деталях их свойства будут обсуждены в разделе "Квантовая теория" - задание N 5.

3.3 Релятивистский эффект Доплера

Рассмотрим плоскую монохроматическую волну

E (

®
r

,t ) = E 0 cos

æ
è

®
k

·

®
r

- w t

ö
ø

.

(23)

Здесь - частота волны, а = k - волновой вектор (k = [()/( c )] - волновое число, - единичный вектор в направлении распространения волны (см. Рис. 11).)

Рис. 11

Выясним закон преобразования частоты и волнового вектора при переходе в другую инерциальную систему отсчета. Будем для определенности считать, что волна распространяется под углом  к оси 0x , вдоль которой со скоростью V движется "штрихованная" система отсчета S . Из Рис. 11 видно, что существуют пространственно - временные точки, в которых векторы поля обращаются в нуль (узловые точки волны - те точки, в которых косинус равен нулю). Ясно, что это свойство поля носит объективный характер и должно выполняться во всех инерциальных системах отсчета. Отсюда следует, что фаза электромагнитной волны должна быть инвариантна!

®
k

·

®
r

- wt =

®
k

¢

·

®
r

¢

-w¢ t ¢ .

В декартовых координатах это условие принимает вид:

kx x +ky y + kz z -w t = kx ¢ x ¢ +ky ¢ y ¢ + kz ¢ z ¢ - w¢ t ¢ .

(24)

Поскольку x , y , z , t связаны с x ¢ , y ¢ , z ¢ , t ¢ преобразованием Лоренца , то для обеспечения инвариантности фазы необходимо, чтобы выполнялись преобразования

w¢ =

w- V kx

________
Ö1 - V 2 /c 2

, kx ¢ =

kx - V /c 2 w

________
Ö1 - V 2 /c 2

, ky ¢ = ky , kz ¢ = kz .

(25)

Прямой подстановкой формул (25) в соотношение (24) можно проверить его выполнение.

Найдем теперь связю между частотой 0 в системе источника волны и частотой  той же волны в системе наблюдателя.

Полагая в первой формуле из (25)  = 0 , kx = [()/( c )] cos, где - угол распространения волны относительно V в системе наблюдателя (приемника), найдем

w = w0

________
Ö1 - V 2 /c 2

1 - (V /c )cosq

.

(26)

Эта формула выражает собой эффект Доплера - изменение частоты волны, вызанное относительным движением источника и приемника.

При V /c 1 из (26) имеем

Dw = w- w0 = w0 (V /c ) cosq.

Частота волны возрастает при сближении источника и наблюдателя ( в этом случае проекция скорости на направление луча V  = V cos0) и убывает при их удалении (V  0) продольный эфект Доплера . Если относительная скорость направлена перпендикулярно лучу зрения (cos = 0), то уменьшение частоты представляет собой эффект, квадратичный по V /c :

Dw = -

w0

2

æ
ç
è

V

c

ö
÷
ø

2

- поперечный эффект Доплера .

При выводе последних двух формул учтено, что при V /c 1

1

1 - (V /c )cosq

» 1 + (V /c )cosq,

________
Ö1 - (V /c )2

» 1 - (V /c )2 /2.

Красное смещение (в сторону волн большей длины) наблюдаемое на Земле в спектрах излучения далеких галактик по сравнению с эталонными линиями интерпретируется как эффект раширения Метагалактики (наблюдаемой части Вселенной) - взаимного удаления галактик друг от друга. В 1928 г. Э. Хабблом было обнаружено, что скорости разбегания галактик приблизительно пропорциональны расстоянию до них:

v ~ H R .

Константа Хаббла H  50 100 км/(с·Мпк). Значение H -1  13 млрд. лет определяет время, истекшее с начала расширения Метагалактики при условии постоянной скорости расширения.


Заключение

ОТО — завершенная физическая теория. Она завершена в том же смысле, что и классическая механика, классическая электродинамика, квантовая механика. Подобно им, она дает однозначные ответы на физически осмысленные вопросы, дает четкие предсказания для реально осуществимых наблюдений и экспериментов. Однако, как и всякая иная физическая теория, ОТО имеет свою область применимости. Так, вне этой области лежат сверхсильные гравитационные поля, где важны квантовые эффекты. Законченной квантовой теории гравитации не существует.

ОТО — удивительная физическая теория. Она удивительна тем, что в ее основе лежит, по существу, всего один экспериментальный факт, к тому же известный задолго до создания ОТО (все тела падают в поле тяжести с одним и тем же ускорением). Удивительна тем, что она создана в большой степени одним человеком. Но прежде всего ОТО удивительна своей необычайной внутренней стройностью, красотой. Не случайно Ландау говорил, что истинного физика-теоретика можно распознать по тому, испытал ли человек восхищение при первом же знакомстве с ОТО.

Примерно до середины 60-х годов ОТО находилась в значительной мере вне основной линии развития физики. Да и развитие самой ОТО отнюдь не было весьма активным, оно сводилось в большой степени к выяснению определенных тонких мест, деталей теории, к решению пусть важных, но достаточно частных задач.

Вероятно, одна из причин такой ситуации состоит в том, что ОТО возникла в некотором смысле слишком рано, Эйнштейн обогнал время. С другой стороны, уже в его работе 1915 года теория была сформулирована в достаточно завершенном виде. Не менее важно и то обстоятельство, что наблюдательная база ОТО оставалась очень узкой. Соответствующие эксперименты чрезвычайно трудны. Достаточно напомнить, что красное смещение удалось измерить лишь спустя почти 40 лет после того, как было обнаружено отклонение света в поле Солнца.

СТО возникла больше для решения специальных задач и никоим образом не противоречит принципам ОТО. Она лишь дополнение реального состояния науки с точки зрения потребности современной физики и естествознания. Релятивизм не мертв, он лишь отражение состояния научно-технической мысли того времени.

Тем не менее, в настоящее время СТО — бурно развивающаяся область современной физики. Это результат огромного прогресса наблюдательной астрономии, развития экспериментальной техники, впечатляющего продвижения в теории.

Список использованных источников

1. “Принцип относительности” Лоренц, Пуанкаре, Эйнштейн и Минковский; ОНТИ ; 1935 г., стр. 134

2. Полное собрание трудов, Л. И. Мандельштам; Том 5, стр. 172

3. А.Эйнштейн. К электродинамике движущихся сред. - М.: 1966.

4. "Общая теория относительности"; Н. В. Мицкевич; Москва., 1927 г

5. "Парадоксы теории относительности"; Я. П. Терлецкий; Москва., 1965 г.

6. Л.В. Тарасов, Современная физика в средней школе. М.: Просвещение, 1990.

7. В.Н. Дубровский, Я.А. Смородинский, Е.Л. Сурков, Релятивистский мир. (Библиотечка "Квант", выпуск 34). М.: Наука, 1984.

8. Э.Тейлор, Дж. Уилер, Физика пространства - времени. М.: Мир, 1969.

9. И.И. Гольденблат, Парадоксы времени в релятивистской механике. М.: Наука, 1972.

10. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик, 1001 задача по физике с ответами, указаниями, решениями. Москва - Харьков, Илекса. 1997.

11. И.И. Воробьев Теория относительности в задачах. М.: Наука, 1989.

12. П.В. Елютин, Г.А. Чижов, Словарь-справочник по элементарной физике. Часть 3. М., 1995.

13. Эйнштейн, Л.Инфельд. Эволюция физики. - М.: 1966.

14. В.Л.Гинзбург. О теории относительности. - М.: Наука, 1970.

15. Г.Линдер. Картины современной физики. - М.: Мир, 1977.

16. А.В.Горелов. Элементы теории относительности- элементарное изложение специальной теории относительности.

17. П.А.М.Дирак. Воспоминания о необычайной эпохе. - М.: Наука, 1990.

[ГАсГ1]




29-04-2015, 02:11

Страницы: 1 2 3 4
Разделы сайта