Но очень уж утомительно крутить прерыватель. Неужели нельзя как-то исключидурах? Оказывается можно, и сделать это сравнительно легко. 25 февраля 1837 г. на докладе Франкфуртскому физическому обществу некий Иоганн Филипп Вагнер (1799–1879), бухгалтер по торговле железом, представил конструкцию электромагнитного молоточка. Поскольку это устройство, известное как самопрерыватель Вагнера, сыграло громаднейшую роль в развитии электротехники, уделим ему особое внимание (рис. 2).
Подковообразный электромагнит при прохождении по нему электрического тока притягивает якорь. Якорь токопроводен, имеет специально устроенное контактное устройство, которое размыкается, когда якорь притягивается. Пружина возвращает якорь в исходное состояние, потому что обесточивается электромагнит, питаемый через контактное устройство, и цикл повторяется. Частота повторений циклов зависит от жесткости пружины и, в первую очередь, от контактного промежутка, который регулируется. Схема такого самопрерывателя до сих пор применяется в электрических звонках.
У конструкторов катушки возникла идея использовать этот принцип, применяя первичную обмотку, которая, конечно, образовывала магнитное поле и вполне могла притянуть небольшой якорек с контактом. Эта гениальная идея быстро была воплощена в жизнь. Такая катушка индуктивности завоевала признание и у врачей, и у исследователей не только электричества, но и иных областей физики. Но…
Катушка прекрасно работала только считанные минуты. Сложилась парадоксальная ситуация, когда устройство, предназначенное для генерирования искр, само выходило из строя из-за искр в прерывателе. Явление самоиндукции в первичной обмотке (вспомним опыт Генри) губило контакты прерывателя. Зачастую они полностью сгорали, хотя только из каких металлов их не пытались делать. Тупиковая ситуация. Это был именно тот случай, когда электрикам могла помочь только наука.
На помощь пришли физики. Известно, что самоиндукция объясняется инерционностью движущихся электрических зарядов в проводнике. Как и любое движущее тело, их мгновенно остановить нельзя. Поэтому при разрыве цепи происходит пробой воздушного промежутка.
Представим себе такой случай. Стальной шарик, падая с метровой высоты в фарфоровую чашку, разбивает ее. Если же эту чашку заполнить сахарным песком, то шарик завязнет в сахаре и чашка останется целой. Вот если бы так можно было сделать на пути инерционного электрического тока!
Эту задачу решает французский физик Арман Физо (1918–1896). Решение настолько просто и изящно, что лишний раз демонстрирует – сложные вещи можно решать простыми способами. Физо помещает параллельно контактам прерывания обыкновенный конденсатор. В момент замыкания контактов прерывателя он этими же контактами замкнут накоротко и, следовательно, разряжен. В момент размыкания контакта цепь не размыкается, просто в нее включается новый элемент – конденсатор. Весь инерционный поток электрических зарядов продолжает двигаться, но теперь эти заряды настроены на зарядку конденсатора.
Когда напряжение конденсатора достигает напряжения источника – ток прекращается. Искра не возникает. Все это происходило за какие-то доли секунды. Стоит только удивляться таланту физика, придумавшего это, когда не было осциллографов (рис. 1, поз. 2).
Казалось бы, все вопросы решены. Увеличивай число витков вторичной обмотки и получай любое высокое напряжение. Но не тут-то было. Наступает момент, когда это напряжение пробивает не только воздух (искры), но и изоляцию между витками вторичной обмотки. Нужно было придумать способ борьбы с этим явлением. И он был найден! Вторичную обмотку начали изготавливать секционно. Каждую секцию отделяли от других специальными изоляционными щечками (щетками?) (рис. 3).
Нами приводится окончательный вид катушки индуктивности со ртутным прерывателем, конденсатором, секционными обмотками и переключателем питания конструкции Румкорфа. Вот это действительно его изобретение.
А для чего нужен переключатель? Дело в том, что в зависимости от индуктивности первичной обмотки токи, намагничивающие сердечник, и токи самоиндукции ее, могут быть разными по величине (амплитуде). Иногда это свойство необходимо в лабораторной практике.
Каким бы мелким ни казалось на первый взгляд изобретение Румкорфа, значение его даже в настоящее время огромно. Именно таким способом осуществляется коммутация машин постоянного тока через коллекторно-щеточный аппарат. Мы приводим рисунок с изображением переключателя Румкорфа (рис. 4). Заметим, что переключатель на индукторе другой конструкции.
А кому эти искры нужны?
С начала ХIХ века развивающаяся фабричная система хозяйствования требовала создания совершенно нового типа двигателей. Паровая машина была слишком сложна и неповоротлива. Котлы и топки с ручным отоплением делали их неприемлемыми для малых мощностей. Идея создания двигателя внутреннего сгорания наталкивалась на проблемы зажигания газовых смесей в цилиндрах. Первый такой двигатель изобретателя Барнета имел специальное запальное устройство с горевшими все время двумя факелами и золотниковое распределение этих огней. Такая машина не могла быть экономичной.
Способность электричества давать искры внутри закрытых объемов известна со времен Пристли (эвдиометр). Создание индукционного генератора искр как нельзя лучше подходило к решению проблемы. И первый практически пригодный двигатель внутреннего сгорания был оборудован электрическим зажиганием. Это был газовый двигатель Ленуара. Идея применения индукционной катушки оказалась настолько плодотворной, что как минимум на 150 лет вперед решила вопросы зажигания карбюраторных двигателей [10].
В искрах нуждалась и наука. Получаемые из лейденских банок искры хоть и были кратковременными, но дали возможность синтезировать некоторые вещества, например окислы азота. При возможности длительной генерации искр можно было бы ставить вопрос об искпороха. При изучении искр некоторые ученые обратили внимание на тот факт, что цвет искры при разряде банки зависит от разрядов электродов, между которыми эта искра проскакивала. Вот если бы продолжительность искр увеличить…
Что ж, голландец Ван дер Виллиген впервые для изучения цвета искр применяет индукционную катушку. Теперь с помощью трехгранной призмы, какой пользовался Ньютон, можно свет искры разложить на составляющие, как и свет от Солнца. Оказывается, что спектр свечения различных веществ присущ только одному из известных элементов. По спектру искр между электродами, если их смазать растворами неизвестных химических соединений, можно узнать, какие химические элементы туда входят [11]. Так возникла спектроскопия.
Исследователи газов тоже не обойдены. Еще со времен Гауксби известно, что в безвоздушном стеклянном шаре при его натирании возникает загадочное свечение, имеющее электрические корни. В относительный вакуум такого шара ввели электроды и подсоединили к катушке. Оказалось, что шар тоже светится. Светятся и стеклянные трубки с торричелиевой пустотой.
Отчего не опробовать это в оптической мастерской? Ведь там варят оптическое стекло и занимаются опытами с электричеством. Тем более что торричелиеву пустоту в трубках можно создать просто с помощью ртути. Такими опытами начинает заниматься Румкорф. Это известно по его единственному научному достижению. Он обнаруживает, что газ, светящийся в трубке, не сплошной, а разделен на слои, перпендикулярные трубке. Впрочем, Румкорф не знает, что до него это уже описал У. Грове [12].
Вполне возможно, что к исследованиям по светящимся газам Румкорфа подтолкнул Дагерр, занимающийся вопросами светящихся картин и диорамами. Тем более что различные газы в условиях высокого разрежения дают разный цвет свечения. И цвет этот весьма красив, что нам сейчас хорошо известно по газосветной рекламе.
Вскоре в Бонне стеклодув Генрих Гейсслер (1814–1879), имеющий свои мастерские и хороший вакуумный насос, начинает массовое изготовление светящихся трубок разных форм и размеров, большей частью для демонстрационных целей. Они так и назывались гейсслеровыми трубками. (Некоторые экземпляры демонстрируются в Политехническом музее Москвы.) Для научных целей изготавливались специальные трубки с узким каналом, имитировавшим световую щель спектографа.
Развитие спектроскопии газов позволило сделать сенсационные открытия в науке. Так впервые на Солнце был обнаружен неизвестный газ, названный гелием (от «гелиос» – Солнце). Только спустя годы этот газ был найден на Земле.
Потребность в катушках индуктивности да и в других электрических приборах была большой. Никакой промышленной основы для изготовления таких специфических устройств не существовало. Появляются специализированные мастерские во главе с владельцами-самоучками, которые занимаются этими проблемами. Сейчас подобные мастерские под названием опытных лабораторий существуют при ю организовывал в 1845 г. И.Г. Гальске (1814–18901), а в Париже на рю-де-Шамполон – ушедший из мастерской Шевалье Генрих Даниель Румкорф в 1840 г. Его называют обаятельным человеком. И в этом нет ничего удивительного. Он прекрасно знаком с декоратором парижских театров Опера Амбигю, а через него и с артистами, художниками. Короче, с богемой Парижа ХIХ века. А об обитателях Монмарта того времени почти все всем известно.
Непринужденная атмосфера царит и в мастерской Румкорфа. Именно сюда переходит работать Т. Грамм, будущий изобретатель перспективного электродвигателя, поскольку в мастерской была творческая атмосфера и возможность заниматься своими изобретениями [13].
Попытки создания искусственных молний
Фотография способствовала появлению среди энтузиастов электричества человека с непонятной для этой науки профессией. Профессией археолога. Поводом послужило случайное обстоятельство.
В 1849 г. некий Гро, французский посол в Афинах и один из первых фотолюбителей, сфотографировал фрагменты Акрополя. Возвратившись в Париж, он через лупу начал рассматривать фотоснимки. К своему удивлению, на одном из попавших в кадр снимка камне он обнаружил изображение льва, раздирающего когтями змею. Любопытно, что изображение было незаметно для невооруженного глаза и только благодаря фотографии и удачному косому освещению камня удалось обнаружить неизвестное произведение древнегреческого искусства.
В фотографии возникает вопрос об искусственном освещении объектов. И применение косого освещения было не самым важным. Дело в том, что первые светочувствительные пластинки обладали низкой чувствительностью, и при портретных снимках приходилось сидеть, не двигаясь и не моргая долгие минуты.
За решение этой проблемы берется французский граф Теодор дю-Монсель (1821–1884), археолог по образованию, академик. Он пробует поджигать различные химические смеси, чтобы добиться хорошей освещенности. В качестве источника получения искры он использует индукционную катушку. В результате появляется книга «Уровни систем, зажигаемых на расстоянии и воспламеняемых электрическим током» (1853). В конце концов, такая смесь находится. Это металлический магний и бертолетова соль. Но граф-археолог увлекается своими электрическими исследованиями и решает создать в лабораторных условиях некое подобие грозового разряда. Он предположил, что эксперименты с высоковольтной искрой воспроизводят условия, аналогичные тем, что характерны для грозового облака и даже шаровой молнии. Но для проведения опытов нужна очень длинная искра. За решение этой проблемы берется Румкорф. Он поставляет в лабораторию все оборудование, необходимое Монселю [16].
Если первые конструкции его катушки давали искру длиной около 2 см, то к 1860 г. в новейших вариантах устройство обеспечивало искру полуметровой длины. Это означает, что между кондукторами индуктора достигалось напряжение порядка 250 тыс. вольт! Принципество изоляции, изменялись прерыватели… Иногда достигалась искра длиной один метр, но это было уже после смерти Румкорфа.
Дю-Монсель до конца своей жизни продолжал заниматься электричеством и написал ряд книг, составляющих своеобразную энциклопедию электрических знаний, в том числе «Приложения электричества» [13].
Правительство Наполеона III волновал, скорее всего, не вопрос искусственной молнии. В 1853 г. разразилась Крымская война, которая закончилась жестоким поражением России после сдачи Севастополя. Однако при его обороне в минном подземном сражении Россия была технически более оснащенной. В те времена Англия, Франция, Сардиния и Турция, воевавшие против России, применяли огневой способ поджога взрывчатки. Россия благодаря Б.С. Якоби – гальванический, с использованием катушки Румкорфа. В результате этого число отказов при взрыве российских мин составляло всего лишь 1%, а у противников 22% [14].
Интересно отметить, что, имея гальванические элементы и катушки Румкорфа, российские воины пытались применять электрическое освещение посредством трубок гейсслера при подземных работах. Там освещение необходимо небольшое, а при отсутствии вентиляции применение шахтерской лампы уменьшало и без того скудное содержание кислорода в сапах и галереях.
Не только катушки
Мастерские Румкорфа выпускали не только катушки и индукторы. Спросом пользовались гальванометры, изготовленные Румкорфом. О высоком качестве этих устройств свидетельствует Фарадей: «Мой гальванометр был изготовлен Румкорфом и был очень чувствителен… В том, что имеется контакт в цепях, можно было в любой момент убедиться посредством слабой термопары, которая нагревается пальцами» (1815 г.) [15].
Кстати, используя эту чувствительность, К.А. Тимирязев упросил уже пожилого Румкорфа изготовить термоэлектрический прибор для измерения температуры листьев растений. Известны также электромагниты, выпускавшиеся парижской мастерской, коммутационная аппаратура, термоэлектрические батареи и т.д.
Размеры статьи не позволяют подробно остановиться на открытиях, сделанных с использованием индукторов Румфорфа – этих надежнейших и конструктивно оформленных лабораторных устройств. Но нельзя не упомянуть о трех из них, непосредственно повлиявших на развитие человечества. Это впервые примененные в электрическом освещении катушки в роли трансформаторов. Мы приводим рисунок из патента П.Н. Яблочкова 1877 г. (рис. 5). Приятно осознавать, что русский изобретатель первым применил на практике устройство, позволяющее передавать электроэнергию за тысячи километров от места генерации.
На рис. 6 изображен вибратор Г. Герца с катушкой Румкорфа, от которого были получены радиоволны в 1886 г. Это, по сути, самый первый радиопередатчик.
Индуктор Румкорфа в опытах с вакуумными трубками позволил Рентгену открыть в 1895 г. новый вид лучей, для которых непрозрачные тела стали прозрачными (рис. 7).
Автор считает, что присвоение во Франции катушке индуктивности наименования катушки Румкорфа «все-таки несправедливо», так как к ее созданию причастны многие, предложившие элементы ее усовершенствования. Подчеркнем: весьма полезные, но отдельные элементы.
Не секрет, что предметом изобретения признается способ, устройство или совокупность известных технических устройств, дающая новый технический эффект. Именно Румкорф, применив технические устройства, создал в 1852 г. катушку рациональной конструкции, нашедшую широчайшее практическое применение во всем мире. Не только во Франции, но и в России, других странах эта катушка-долгожитель носит до сих пор имя Румкорфа, что, на наш взгляд, вполне справедливо.
Однако в истории с катушкой сложнее другая коллизия – коллизия приоритета. Дело в том, что в 1838 г., т.е. ранее Румкорфа, американский изобретатель-электрик, работавший в патентном ведомстве, Чарльз Пейдж в одной из своих статей описал индукционную катушку. Но в те годы научный центр находился в Европе, научно-техническая информация не распространялась так стремительно, как в наше время, и на статью Пейджа не обратили внимания. Тем более что вскоре по конструкции Румкорфа катушка изготовлялась во многих странах.
Узнав о полученной Румкорфом баснословной награде, Пейдж вознегодовал и решил добиваться особого законодательного акта, разрешающего ему получение патента на свой индукционный прибор. Он понимал, что наиболее эффективную поддержку сможет получить, поставив вопрос о чести нации и выступив против «пренебрежения американскими достижениями, ставшего слишком обычным для европейских ученых». Пейдж заявил, что у него «украли почести, принадлежавшие по праву ему» и что произошедшее с ним носит такой характер, который «ни разу не случался ни с одним американским изобретателем».
Для усиления своей позиции Пейдж в 1867 г. выпустил книгу «История индукции: американская заявка на индукционную катушку и ее электростатические применения», в которой утверждал, что «Румкорф не был автором какого-либо изобретения, открытия или усовершенствования, связанного с индукционной катушкой, носящей его имя». Расплатившись и перейдя на личности, Пейдж заявил, что Румкорф просто был неспособен изготовить что-либо мало-мальски похожее по значимости на катушки Пейджа.
Патриотически настроенные конгрессмены поддержали жалобу Пейджа и добились принятия закона, позволившего Пейджу в виде исключения задним числом оформить патент. И это несмотря на наличие патентного закона 1836 г., запрещавшего работникам патентного ведомства иметь «какие-либо права или интерес прямой или косвенный в любом патенте».
Патент Пейджу был выдан, но славы ему не принес. Вскоре Пейдж скончался, а после его смерти в США разразился скандал. Ведь выданный патент лишал права многочисленных производителей индукционной кату) без разрешения семьи Пейджа, ставшей обладателем патента.
В американских журналах появились многочисленные публикации, в которых Пейджа объявляли мошенником, сознательно обманувшим правительство, и выдвигались требования ликвидации данного патента.
Вот такая драматическая ситуация сложилась вокруг изобретения индукционной катушки.
29-04-2015, 05:05